Jie Dong, Wenqiang Yang, Kayoung Cho, Jeong Hyun Jung, Huanyu Zhou, Eojin Yoon, Hao Chen, Hyeon-Dong Lee, Seung Hyeon Jo, Jae-Man Park, Qingsen Zeng, Tingyu Long, Kyung Yeon Jang, Seong Eui Chang, Chan-Yul Park, Min-Jun Sung, Joo Sung Kim, Hyeree Kim, Dandan Song, Zheng Xu, JaeHong Park, Jeong-Yun Sun, Tae-Woo Lee
{"title":"Interfacial Decoupling Layer Enabled Low-n Phase Enrichment for Blue Quasi-2D Perovskites","authors":"Jie Dong, Wenqiang Yang, Kayoung Cho, Jeong Hyun Jung, Huanyu Zhou, Eojin Yoon, Hao Chen, Hyeon-Dong Lee, Seung Hyeon Jo, Jae-Man Park, Qingsen Zeng, Tingyu Long, Kyung Yeon Jang, Seong Eui Chang, Chan-Yul Park, Min-Jun Sung, Joo Sung Kim, Hyeree Kim, Dandan Song, Zheng Xu, JaeHong Park, Jeong-Yun Sun, Tae-Woo Lee","doi":"10.1021/acsenergylett.4c02351","DOIUrl":null,"url":null,"abstract":"The random <i>n</i>-monolayer phase distributions and impurity phases impose challenges to achieving blue-emission quasi-2D perovskite light emitting diodes (PeLEDs), and their formation mechanism is unclear. Here, we uncover the reasons behind the phase formation and distribution in blue-emission quasi-2D perovskites by probing into the molecular interactions at the buried interface between substrates and perovskites and propose a mechanistic model to depict the film formation process. Furthermore, an interfacial decoupling layer, perfluorinated ionomer, was employed to successfully mitigate the negative impact of substrates on the phase formation and distribution of blue-emission quasi-2D perovskites, resulting in an ordered phase distribution and a reduction of undesired phases. Besides, this interfacial layer effectively suppressed the nonradiative recombination losses, leading to enhanced photoluminescence quantum yield from 12.71% to 60.13% and notable blue shift (∼10 nm) even without incorporating Cl ions. As a result, blue PeLEDs based on this strategy achieved an external quantum efficiency reaching 12.09%.","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"10 1","pages":""},"PeriodicalIF":19.3000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsenergylett.4c02351","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The random n-monolayer phase distributions and impurity phases impose challenges to achieving blue-emission quasi-2D perovskite light emitting diodes (PeLEDs), and their formation mechanism is unclear. Here, we uncover the reasons behind the phase formation and distribution in blue-emission quasi-2D perovskites by probing into the molecular interactions at the buried interface between substrates and perovskites and propose a mechanistic model to depict the film formation process. Furthermore, an interfacial decoupling layer, perfluorinated ionomer, was employed to successfully mitigate the negative impact of substrates on the phase formation and distribution of blue-emission quasi-2D perovskites, resulting in an ordered phase distribution and a reduction of undesired phases. Besides, this interfacial layer effectively suppressed the nonradiative recombination losses, leading to enhanced photoluminescence quantum yield from 12.71% to 60.13% and notable blue shift (∼10 nm) even without incorporating Cl ions. As a result, blue PeLEDs based on this strategy achieved an external quantum efficiency reaching 12.09%.
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍:
ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format.
ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology.
The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.