{"title":"Influence of calcination conditions on deep eutectic solvents (DES) leaching efficiency of light rare earth elements in bastnasite ore","authors":"S. Samet Kaplan, Cisem Celik Kurtulan, Sebahattin Gurmen, Gokhan Orhan, M.Seref Sonmez","doi":"10.1016/j.mineng.2024.109087","DOIUrl":null,"url":null,"abstract":"In this century, our daily life is surrounded by technological devices, and Rare Earth Elements (REE) are at the heart of this technological revolution. They are always listed having the highest supply risk in critical minerals published by different countries. From that point of view, their extraction, and creating a secured supply chain is always crucial. In this research, the influence of calcination conditions on REE extraction from bastnasite ore was studied. Identical leaching in Ethylene Glycol (EG)-FeCl<ce:inf loc=\"post\">3</ce:inf> media which is one of the Deep Eutectic Solvents (DES) was applied to different calcines to understand calcination parameters on leaching efficiency. After conducting experiments created by Box-Behnken approach with different parameters of temperature, duration, and particles size, the highest Light Rare Earth Elements (LREE) extraction efficiency of 67.22 wt% was achieved at 900° C. However, while conducting control experiments, the highest extraction efficiency was found to be 75.986 wt% as a median of the experiments conducted at 500 °C during 180 min, and with particles finer than 25 µm. This efficiency increase with decreasing temperature is explained by Ce phase transformation from Ce<ce:inf loc=\"post\">2</ce:inf>O<ce:inf loc=\"post\">3</ce:inf> to CeO<ce:inf loc=\"post\">2</ce:inf> as proved by XRD analysis. In addition to temperature, particle size was also found highly effective in extraction efficiency especially in Ce extraction. At the experiments conducted at 900 °C, and 270 min but with particles at different size ranges, Ce extraction dramatically dropped from 71.061 wt% to 9.587 wt% at the experiment conducted with finer particles. This lose in efficiency is directly correlated to increasing Ce phase transformation rate due to increasing surface area of fine particles. Non-calcined ore was also leached with DES, and only 10.977 wt% LREE could be extracted. Furthermore, it is concluded that calcination is of vital importance to transform the ore into a soluble form, and temperature, and particle size ranges are found to be two fundamental parameters for tuning the extraction efficiency.","PeriodicalId":18594,"journal":{"name":"Minerals Engineering","volume":"248 1","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Minerals Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.mineng.2024.109087","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this century, our daily life is surrounded by technological devices, and Rare Earth Elements (REE) are at the heart of this technological revolution. They are always listed having the highest supply risk in critical minerals published by different countries. From that point of view, their extraction, and creating a secured supply chain is always crucial. In this research, the influence of calcination conditions on REE extraction from bastnasite ore was studied. Identical leaching in Ethylene Glycol (EG)-FeCl3 media which is one of the Deep Eutectic Solvents (DES) was applied to different calcines to understand calcination parameters on leaching efficiency. After conducting experiments created by Box-Behnken approach with different parameters of temperature, duration, and particles size, the highest Light Rare Earth Elements (LREE) extraction efficiency of 67.22 wt% was achieved at 900° C. However, while conducting control experiments, the highest extraction efficiency was found to be 75.986 wt% as a median of the experiments conducted at 500 °C during 180 min, and with particles finer than 25 µm. This efficiency increase with decreasing temperature is explained by Ce phase transformation from Ce2O3 to CeO2 as proved by XRD analysis. In addition to temperature, particle size was also found highly effective in extraction efficiency especially in Ce extraction. At the experiments conducted at 900 °C, and 270 min but with particles at different size ranges, Ce extraction dramatically dropped from 71.061 wt% to 9.587 wt% at the experiment conducted with finer particles. This lose in efficiency is directly correlated to increasing Ce phase transformation rate due to increasing surface area of fine particles. Non-calcined ore was also leached with DES, and only 10.977 wt% LREE could be extracted. Furthermore, it is concluded that calcination is of vital importance to transform the ore into a soluble form, and temperature, and particle size ranges are found to be two fundamental parameters for tuning the extraction efficiency.
期刊介绍:
The purpose of the journal is to provide for the rapid publication of topical papers featuring the latest developments in the allied fields of mineral processing and extractive metallurgy. Its wide ranging coverage of research and practical (operating) topics includes physical separation methods, such as comminution, flotation concentration and dewatering, chemical methods such as bio-, hydro-, and electro-metallurgy, analytical techniques, process control, simulation and instrumentation, and mineralogical aspects of processing. Environmental issues, particularly those pertaining to sustainable development, will also be strongly covered.