Structure-Oriented Electrochemical Synthesis of Layered Double Hydroxide Electrocatalytic Materials for 5-Hydroxymethylfurfural Oxidation

IF 7.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Sustainable Chemistry & Engineering Pub Date : 2024-11-01 DOI:10.1021/acssuschemeng.4c0639410.1021/acssuschemeng.4c06394
Yixuan Feng, Richard L. Smith Jr., Feng Shen* and Xinhua Qi*, 
{"title":"Structure-Oriented Electrochemical Synthesis of Layered Double Hydroxide Electrocatalytic Materials for 5-Hydroxymethylfurfural Oxidation","authors":"Yixuan Feng,&nbsp;Richard L. Smith Jr.,&nbsp;Feng Shen* and Xinhua Qi*,&nbsp;","doi":"10.1021/acssuschemeng.4c0639410.1021/acssuschemeng.4c06394","DOIUrl":null,"url":null,"abstract":"<p >Quantitative conversion of biomass-derived 5-hydroxymethylfurfural (HMF) to downstream chemicals at room temperature is a critical milestone in sustainable chemistry. Herein, conversion of metal–organic framework (MOF) structures into layered double hydroxide (LDH) electrocatalytic materials (NiFe-LDH/MOF) was fabricated using NiFe-MOF as a structure-oriented sacrificial template via an in situ electrochemical strategy. Results showed that the electrochemical method to convert the material structures not only overcame inherent limitations of MOF structures (inaccessible sites and low conductivity) but also eliminated LDH self-stacking. Hierarchical NiFe-LDH/MOF exhibited high catalytic activity and selectivity in the electrooxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA), which is due to the increased number of catalytically active sites and the extended electron transport channels of uniformly dispersed LDH nanosheets. Optimized Ni<sub>2</sub>Fe<sub>1</sub>-LDH/MOF materials achieved FDCA yields of 99% with Faraday efficiencies of 99% in 1 M KOH with 50 mM HMF at an applied potential of 1.40 V vs reversible hydrogen electrode at ambient temperature. This work demonstrates a promising method for fabricating LDH electrocatalytic materials from MOF structures and shows a proof of principle for selective oxidation of HMF to FDCA.</p>","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"12 46","pages":"16905–16913 16905–16913"},"PeriodicalIF":7.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssuschemeng.4c06394","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Quantitative conversion of biomass-derived 5-hydroxymethylfurfural (HMF) to downstream chemicals at room temperature is a critical milestone in sustainable chemistry. Herein, conversion of metal–organic framework (MOF) structures into layered double hydroxide (LDH) electrocatalytic materials (NiFe-LDH/MOF) was fabricated using NiFe-MOF as a structure-oriented sacrificial template via an in situ electrochemical strategy. Results showed that the electrochemical method to convert the material structures not only overcame inherent limitations of MOF structures (inaccessible sites and low conductivity) but also eliminated LDH self-stacking. Hierarchical NiFe-LDH/MOF exhibited high catalytic activity and selectivity in the electrooxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA), which is due to the increased number of catalytically active sites and the extended electron transport channels of uniformly dispersed LDH nanosheets. Optimized Ni2Fe1-LDH/MOF materials achieved FDCA yields of 99% with Faraday efficiencies of 99% in 1 M KOH with 50 mM HMF at an applied potential of 1.40 V vs reversible hydrogen electrode at ambient temperature. This work demonstrates a promising method for fabricating LDH electrocatalytic materials from MOF structures and shows a proof of principle for selective oxidation of HMF to FDCA.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
以结构为导向合成用于 5-羟甲基糠醛氧化的层状双氢氧化物电催化材料
在室温下将生物质衍生的 5-hydroxymethylfurfural (HMF) 定量转化为下游化学品是可持续化学的一个重要里程碑。在此,我们以 NiFe-MOF 为结构导向的牺牲模板,通过原位电化学策略将金属有机框架(MOF)结构转化为层状双氢氧化物(LDH)电催化材料(NiFe-LDH/MOF)。结果表明,通过电化学方法转换材料结构不仅克服了 MOF 结构的固有局限性(难以获得的位点和低导电性),而且消除了 LDH 自堆叠现象。分层 NiFe-LDH/MOF 在将 5-hydroxymethylfurfural (HMF) 电氧化为 2,5-呋喃二甲酸 (FDCA) 的过程中表现出很高的催化活性和选择性,这是由于均匀分散的 LDH 纳米片增加了催化活性位点的数量并扩展了电子传输通道。优化后的 Ni2Fe1-LDH/MOF 材料在 1 M KOH 和 50 mM HMF 溶液中的 FDCA 产率达到 99%,法拉第效率达到 99%,对可逆氢电极的施加电位为 1.40 V,环境温度为 1.40 V。这项工作展示了一种利用 MOF 结构制造 LDH 电催化材料的可行方法,并证明了将 HMF 选择性氧化为 FDCA 的原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Sustainable Chemistry & Engineering
ACS Sustainable Chemistry & Engineering CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
13.80
自引率
4.80%
发文量
1470
审稿时长
1.7 months
期刊介绍: ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment. The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.
期刊最新文献
Enhanced Glucan–Chitin Complex Extraction from Deoiled Yeast Biomass for Sustainable Biorefinery Applications Integrated Recycling of Red Mud for Iron Ore Sinter Manufacturing: Interfacial Bonding Regulation of the Sintering Process Design Development of Integrated Methane Pyrolysis and Reforming Processes for Low-Carbon Urea Production La0.4Sr0.6CoO3-Catalyzed Selective Oxidation of Ethylbenzene to Acetophenone without Solvent: A New Reactive Oxygen Species Transformation Mechanism Mediated by •O2– Derived from 1O2 Enhancing Photocatalytic Hydrogen Production from Single S. oneidensis MR-1/CdS Biohybrid System via Optimized Electron Transport at the Bioabiotic Interface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1