{"title":"Universal domain adaptation for machinery fault diagnosis based on multi-scale dual attention network and entropy-based clustering","authors":"Chun-Yao Lee, Guang-Lin Zhuo","doi":"10.1049/smt2.12213","DOIUrl":null,"url":null,"abstract":"<p>Recently, data-driven cross-domain fault diagnosis methods for rotating machinery have been successfully developed. However, most existing diagnostic methods assume that the label spaces of the source and target domains are the same. In practice, the relationship between the label space of the source domain and the target domain is unknown, that is, the universal domain adaptation (UDA) problem. Existing overall domain distribution alignment methods are less effective in facing UDA problems. Thus, this article proposes a deep learning-based UDA model. First, the proposed model combines multi-scale learning and dual attention block, which can improve the capability to extract effective features. Then, an entropy optimization strategy is introduced to promote target domain sample clustering without prior knowledge. Finally, the effectiveness of the proposed model is verified on a public dataset of rotating machinery. The results show that the proposed method outperforms six existing cross-domain fault diagnosis methods.</p>","PeriodicalId":54999,"journal":{"name":"Iet Science Measurement & Technology","volume":"18 9","pages":"522-533"},"PeriodicalIF":1.4000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/smt2.12213","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Science Measurement & Technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/smt2.12213","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, data-driven cross-domain fault diagnosis methods for rotating machinery have been successfully developed. However, most existing diagnostic methods assume that the label spaces of the source and target domains are the same. In practice, the relationship between the label space of the source domain and the target domain is unknown, that is, the universal domain adaptation (UDA) problem. Existing overall domain distribution alignment methods are less effective in facing UDA problems. Thus, this article proposes a deep learning-based UDA model. First, the proposed model combines multi-scale learning and dual attention block, which can improve the capability to extract effective features. Then, an entropy optimization strategy is introduced to promote target domain sample clustering without prior knowledge. Finally, the effectiveness of the proposed model is verified on a public dataset of rotating machinery. The results show that the proposed method outperforms six existing cross-domain fault diagnosis methods.
期刊介绍:
IET Science, Measurement & Technology publishes papers in science, engineering and technology underpinning electronic and electrical engineering, nanotechnology and medical instrumentation.The emphasis of the journal is on theory, simulation methodologies and measurement techniques.
The major themes of the journal are:
- electromagnetism including electromagnetic theory, computational electromagnetics and EMC
- properties and applications of dielectric, magnetic, magneto-optic, piezoelectric materials down to the nanometre scale
- measurement and instrumentation including sensors, actuators, medical instrumentation, fundamentals of measurement including measurement standards, uncertainty, dissemination and calibration
Applications are welcome for illustrative purposes but the novelty and originality should focus on the proposed new methods.