{"title":"A calibration approach for compensating hysteresis and nonlinearity error in an MEMS based instrument for porewater pressure monitoring","authors":"Milad Barzegar, Saba Gharehdash, Wendy Timms","doi":"10.1049/smt2.12234","DOIUrl":null,"url":null,"abstract":"<p>Micro-electro-mechanical system (MEMS) technology is becoming increasingly popular in geotechnical and hydrological monitoring due to their distinct features, including its small size, low cost, low energy consumption, and resistance to vibration shock. Due to the nature of design, they exhibit a series of errors, and most importantly, hysteresis and nonlinearity, which should be compensated before any practical application in order to achieve the highest degree of accuracy and precision. This article proposes a practical approach to enhance the accuracy of a newly developed MEMS instrument for groundwater monitoring. The hysteresis and nonlinearity errors were compensated using an integrated two-step approach with an optimized Preisach model and an optimized spline approximation, respectively. A hybrid differential evolution-hill climbing algorithm was utilized to achieve optimum models. This optimization algorithm integrates global and local search, offering higher accuracy and computational stability with a lower calibration point requirement. Analysing the results indicates that the nonlinearity error shows an improvement of more than 94% and hysteresis decreased up to 67%. The results illustrate that the compensation can be performed very well using the proposed methodology with lower uncertainty, mean square error, and standard deviation compared to non-optimized models.</p>","PeriodicalId":54999,"journal":{"name":"Iet Science Measurement & Technology","volume":"19 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/smt2.12234","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Science Measurement & Technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/smt2.12234","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Micro-electro-mechanical system (MEMS) technology is becoming increasingly popular in geotechnical and hydrological monitoring due to their distinct features, including its small size, low cost, low energy consumption, and resistance to vibration shock. Due to the nature of design, they exhibit a series of errors, and most importantly, hysteresis and nonlinearity, which should be compensated before any practical application in order to achieve the highest degree of accuracy and precision. This article proposes a practical approach to enhance the accuracy of a newly developed MEMS instrument for groundwater monitoring. The hysteresis and nonlinearity errors were compensated using an integrated two-step approach with an optimized Preisach model and an optimized spline approximation, respectively. A hybrid differential evolution-hill climbing algorithm was utilized to achieve optimum models. This optimization algorithm integrates global and local search, offering higher accuracy and computational stability with a lower calibration point requirement. Analysing the results indicates that the nonlinearity error shows an improvement of more than 94% and hysteresis decreased up to 67%. The results illustrate that the compensation can be performed very well using the proposed methodology with lower uncertainty, mean square error, and standard deviation compared to non-optimized models.
期刊介绍:
IET Science, Measurement & Technology publishes papers in science, engineering and technology underpinning electronic and electrical engineering, nanotechnology and medical instrumentation.The emphasis of the journal is on theory, simulation methodologies and measurement techniques.
The major themes of the journal are:
- electromagnetism including electromagnetic theory, computational electromagnetics and EMC
- properties and applications of dielectric, magnetic, magneto-optic, piezoelectric materials down to the nanometre scale
- measurement and instrumentation including sensors, actuators, medical instrumentation, fundamentals of measurement including measurement standards, uncertainty, dissemination and calibration
Applications are welcome for illustrative purposes but the novelty and originality should focus on the proposed new methods.