{"title":"Design of non-contact capacitive displacement detection methods for magnetic levitated sphere","authors":"Xing Huang, Guoxiang Hua, Weiwei Li, Jiyuan Yan","doi":"10.1049/smt2.12218","DOIUrl":null,"url":null,"abstract":"<p>To meet the demand for non-contact displacement detection of magnetic levitation spheres, single-ended and differential variable electrode distance capacitance displacement detection schemes are designed in this paper. For these two schemes, finite element simulation models are established in COMSOL Multiphysics software to obtain the relationship between the test capacitance and the displacement of the magnetic levitation sphere. In the single-ended scheme, there is a non-linear relationship between the test capacitance and the position of the levitated sphere, and this non-linearity becomes more significant as the sphere moves away from the electrode plate. In contrast, in the differential scheme, the test capacitance and the displacement of the levitated sphere follow a linear relationship, but the test sensitivity decreases with the expansion of the measuring range. The simulation results of the differential scheme have been verified by building a spherical displacement detection simulator, and thanks to the mature development of capacitive detection circuits, the scheme is expected to achieve better than nanoscale displacement detection resolution in the 6.6 mm displacement range of a magnetic levitation sphere in the future.</p>","PeriodicalId":54999,"journal":{"name":"Iet Science Measurement & Technology","volume":"18 9","pages":"556-563"},"PeriodicalIF":1.4000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/smt2.12218","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Science Measurement & Technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/smt2.12218","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
To meet the demand for non-contact displacement detection of magnetic levitation spheres, single-ended and differential variable electrode distance capacitance displacement detection schemes are designed in this paper. For these two schemes, finite element simulation models are established in COMSOL Multiphysics software to obtain the relationship between the test capacitance and the displacement of the magnetic levitation sphere. In the single-ended scheme, there is a non-linear relationship between the test capacitance and the position of the levitated sphere, and this non-linearity becomes more significant as the sphere moves away from the electrode plate. In contrast, in the differential scheme, the test capacitance and the displacement of the levitated sphere follow a linear relationship, but the test sensitivity decreases with the expansion of the measuring range. The simulation results of the differential scheme have been verified by building a spherical displacement detection simulator, and thanks to the mature development of capacitive detection circuits, the scheme is expected to achieve better than nanoscale displacement detection resolution in the 6.6 mm displacement range of a magnetic levitation sphere in the future.
期刊介绍:
IET Science, Measurement & Technology publishes papers in science, engineering and technology underpinning electronic and electrical engineering, nanotechnology and medical instrumentation.The emphasis of the journal is on theory, simulation methodologies and measurement techniques.
The major themes of the journal are:
- electromagnetism including electromagnetic theory, computational electromagnetics and EMC
- properties and applications of dielectric, magnetic, magneto-optic, piezoelectric materials down to the nanometre scale
- measurement and instrumentation including sensors, actuators, medical instrumentation, fundamentals of measurement including measurement standards, uncertainty, dissemination and calibration
Applications are welcome for illustrative purposes but the novelty and originality should focus on the proposed new methods.