Cost-Effective Solutions for Lithium-Ion Battery Manufacturing: Comparative Analysis of Olefine and Rubber-Based Alternative Binders for High-Energy Ni-Rich NCM Cathodes

IF 3.5 4区 化学 Q2 ELECTROCHEMISTRY ChemElectroChem Pub Date : 2024-09-24 DOI:10.1002/celc.202400465
Susan Montes, Alexander Beutl, Andrea Paolella, Marcus Jahn, Artur Tron
{"title":"Cost-Effective Solutions for Lithium-Ion Battery Manufacturing: Comparative Analysis of Olefine and Rubber-Based Alternative Binders for High-Energy Ni-Rich NCM Cathodes","authors":"Susan Montes,&nbsp;Alexander Beutl,&nbsp;Andrea Paolella,&nbsp;Marcus Jahn,&nbsp;Artur Tron","doi":"10.1002/celc.202400465","DOIUrl":null,"url":null,"abstract":"<p>Promoting safer and more cost-effective lithium-ion battery manufacturing practices, while also advancing recycling initiatives, is intrinsically tied to reducing reliance on fluorinated polymers like polyvinylidene difluoride (PVDF) as binders and minimizing the use of hazardous and expensive solvents such as N-methyl pyrrolidone (NMP). In pursuit of this objective, olefin- and rubber-based polymers have been investigated as promising alternatives for binder materials in high-energy Ni-rich LiNi<sub>x</sub>Co<sub>y</sub>Mn<sub>z</sub>O<sub>2</sub> (NCM, x≥0.8) cathodes for lithium-ion batteries (LIBs). Alternative binders such as polyisobutylene (PIB), poly(styrene-butadiene-styrene) (SBS), nitrile butadiene rubber (NBR), and its hydrogenated version (HNBR) offer versatile solutions. These polymers can be dissolved in industrial solvents, such as toluene, and have been further processed into homogeneous cathode slurries, thus facilitating the manufacturing of high-energy Ni-rich NCM cathodes for lithium-ion batteries. The evaluation of NCM811 cathodes obtained from PIB, SBS, NBR, and HNBR has involved a thorough assessment of their physical and chemical properties, electrochemical performance, and production expenses, compared with NCM811 cathodes based on PVDF. Notably, cathodes employing PIB and HNBR have exhibited outstanding qualities, showcasing high specific capacity and remarkable electrochemical stability akin to PVDF-based counterparts. Furthermore, the alternative binders′ superior adhesion, elasticity, and thermal stability have facilitated obtaining uniform and mechanically stable cathode films. Furthermore, using toluene, with its low vapor pressure, has significantly reduced energy costs associated with drying processes, thereby enhancing the overall cost-effectiveness of the NCM811 cathodes.</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"11 21","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202400465","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemElectroChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/celc.202400465","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Promoting safer and more cost-effective lithium-ion battery manufacturing practices, while also advancing recycling initiatives, is intrinsically tied to reducing reliance on fluorinated polymers like polyvinylidene difluoride (PVDF) as binders and minimizing the use of hazardous and expensive solvents such as N-methyl pyrrolidone (NMP). In pursuit of this objective, olefin- and rubber-based polymers have been investigated as promising alternatives for binder materials in high-energy Ni-rich LiNixCoyMnzO2 (NCM, x≥0.8) cathodes for lithium-ion batteries (LIBs). Alternative binders such as polyisobutylene (PIB), poly(styrene-butadiene-styrene) (SBS), nitrile butadiene rubber (NBR), and its hydrogenated version (HNBR) offer versatile solutions. These polymers can be dissolved in industrial solvents, such as toluene, and have been further processed into homogeneous cathode slurries, thus facilitating the manufacturing of high-energy Ni-rich NCM cathodes for lithium-ion batteries. The evaluation of NCM811 cathodes obtained from PIB, SBS, NBR, and HNBR has involved a thorough assessment of their physical and chemical properties, electrochemical performance, and production expenses, compared with NCM811 cathodes based on PVDF. Notably, cathodes employing PIB and HNBR have exhibited outstanding qualities, showcasing high specific capacity and remarkable electrochemical stability akin to PVDF-based counterparts. Furthermore, the alternative binders′ superior adhesion, elasticity, and thermal stability have facilitated obtaining uniform and mechanically stable cathode films. Furthermore, using toluene, with its low vapor pressure, has significantly reduced energy costs associated with drying processes, thereby enhancing the overall cost-effectiveness of the NCM811 cathodes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
锂离子电池制造的成本效益解决方案:用于高能量富镍 NCM 阴极的烯烃基和橡胶基替代粘合剂的比较分析
促进更安全、更具成本效益的锂离子电池生产实践,同时推进回收计划,与减少对聚偏二氟乙烯(PVDF)等含氟聚合物作为粘合剂的依赖,以及最大限度地减少 N-甲基吡咯烷酮(NMP)等有害且昂贵溶剂的使用有着内在联系。为了实现这一目标,研究人员对烯烃基和橡胶基聚合物进行了研究,将其作为锂离子电池(LIB)高能量富镍 LiNixCoyMnzO2(NCM,x≥0.8)阴极粘合剂材料的理想替代品。聚异丁烯 (PIB)、聚苯乙烯-丁二烯-苯乙烯 (SBS)、丁腈橡胶 (NBR) 及其氢化型 (HNBR) 等替代粘合剂提供了多功能解决方案。这些聚合物可以溶解在甲苯等工业溶剂中,并被进一步加工成均匀的阴极浆料,从而促进了锂离子电池高能量富镍 NCM 阴极的制造。与基于 PVDF 的 NCM811 阴极相比,对从 PIB、SBS、NBR 和 HNBR 中获得的 NCM811 阴极的评估涉及对其物理和化学特性、电化学性能和生产成本的全面评估。值得注意的是,使用 PIB 和 HNBR 的阴极表现出卓越的品质,与使用 PVDF 的阴极相比,具有高比容量和出色的电化学稳定性。此外,这些替代粘合剂还具有出色的粘附性、弹性和热稳定性,有助于获得均匀且机械稳定的阴极薄膜。此外,使用蒸汽压较低的甲苯还能显著降低与干燥工艺相关的能源成本,从而提高 NCM811 阴极的整体成本效益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ChemElectroChem
ChemElectroChem ELECTROCHEMISTRY-
CiteScore
7.90
自引率
2.50%
发文量
515
审稿时长
1.2 months
期刊介绍: ChemElectroChem is aimed to become a top-ranking electrochemistry journal for primary research papers and critical secondary information from authors across the world. The journal covers the entire scope of pure and applied electrochemistry, the latter encompassing (among others) energy applications, electrochemistry at interfaces (including surfaces), photoelectrochemistry and bioelectrochemistry.
期刊最新文献
Front Cover: Electrocatalytic Performance and Kinetic Behavior of Anion-Intercalated Borate-Based NiFe LDH in Alkaline OER (ChemElectroChem 22/2024) Cover Feature: Cost-Effective Solutions for Lithium-Ion Battery Manufacturing: Comparative Analysis of Olefine and Rubber-Based Alternative Binders for High-Energy Ni-Rich NCM Cathodes (ChemElectroChem 21/2024) Front Cover: High-performance Porous Electrodes for Flow Batteries: Improvements of Specific Surface Areas and Reaction Kinetics (ChemElectroChem 21/2024) Lithium Doping Enhances the Aqueous Zinc Ion Storage Performance of V3O7 ⋅ H2O Nanorods Annihilation Electrochemiluminescence Triggered by Bipolar Electrochemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1