Hierarchical Porous Structured Si/C Anode Material for Lithium-Ion Batteries by Dual Encapsulating Layers for Enhanced Lithium-Ion and Electron Transports Rates.
{"title":"Hierarchical Porous Structured Si/C Anode Material for Lithium-Ion Batteries by Dual Encapsulating Layers for Enhanced Lithium-Ion and Electron Transports Rates.","authors":"Rui Zhang, Peilun Yu, Zhenwei Li, Xiaoqing Shen, Yewei Yu, Jie Yu","doi":"10.1002/smll.202407276","DOIUrl":null,"url":null,"abstract":"<p><p>Silicon (Si) is a promising anode material for next-generation lithium-ion batteries (LIBs) due to its high specific capacity and abundance. However, challenges such as significant volume expansion during cycling and poor electrical conductivity hinder its large-scale application. In this study, the multifunction of sodium polyacrylate (PAAS) utilized to develop a hierarchical porous silicon-carbon anode (Si/SiO<sub>x</sub>@C) through a simple and efficient method. The hierarchical porous structure successively consists of nano-silicon cores, SiO<sub>x</sub> encapsulating layers, surrounding space, and phenolic resin-derived carbon shells with carbon chains connecting the SiO<sub>x</sub> layers and carbon shells in the space. The SiO<sub>x</sub> nanolayers promote Li⁺ transport, while excess PAAS, removed by washing, generates space for volume expansion, improving cycling performance. Residual carbon chains of PAAS and carbon shells form a conducting carbon network, enhancing electron transport and rate performance. As an anode for LIBs, the composite delivers a high reversible capacity of 685.3 mAh g⁻¹ after 1000 cycles at 1 C with a capacity retention rate of 54.7%. Full cells with the Si/SiO<sub>x</sub>@C anode and LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> cathode exhibit an excellent capacity retention rate of 96.8% after 200 cycles at 1 C. This work provides a novel approach for the rational design and engineering of advanced LIBs.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":" ","pages":"e2407276"},"PeriodicalIF":13.0000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202407276","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Silicon (Si) is a promising anode material for next-generation lithium-ion batteries (LIBs) due to its high specific capacity and abundance. However, challenges such as significant volume expansion during cycling and poor electrical conductivity hinder its large-scale application. In this study, the multifunction of sodium polyacrylate (PAAS) utilized to develop a hierarchical porous silicon-carbon anode (Si/SiOx@C) through a simple and efficient method. The hierarchical porous structure successively consists of nano-silicon cores, SiOx encapsulating layers, surrounding space, and phenolic resin-derived carbon shells with carbon chains connecting the SiOx layers and carbon shells in the space. The SiOx nanolayers promote Li⁺ transport, while excess PAAS, removed by washing, generates space for volume expansion, improving cycling performance. Residual carbon chains of PAAS and carbon shells form a conducting carbon network, enhancing electron transport and rate performance. As an anode for LIBs, the composite delivers a high reversible capacity of 685.3 mAh g⁻¹ after 1000 cycles at 1 C with a capacity retention rate of 54.7%. Full cells with the Si/SiOx@C anode and LiNi0.8Co0.1Mn0.1O2 cathode exhibit an excellent capacity retention rate of 96.8% after 200 cycles at 1 C. This work provides a novel approach for the rational design and engineering of advanced LIBs.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.