Size-Dependent Effects of ZIF-8 Derived Cathode Materials on Performance of Zinc-Ion Capacitors.

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Small Pub Date : 2024-11-19 DOI:10.1002/smll.202406187
Jiaxin Li, Yumeng Hua, Yanshen Gao, Shiyun Li, Tomasz Kędzierski, Ewa Mijowska, Paul K Chu, Rudolf Holze, Yi He, Wuguo Bi, Xuecheng Chen
{"title":"Size-Dependent Effects of ZIF-8 Derived Cathode Materials on Performance of Zinc-Ion Capacitors.","authors":"Jiaxin Li, Yumeng Hua, Yanshen Gao, Shiyun Li, Tomasz Kędzierski, Ewa Mijowska, Paul K Chu, Rudolf Holze, Yi He, Wuguo Bi, Xuecheng Chen","doi":"10.1002/smll.202406187","DOIUrl":null,"url":null,"abstract":"<p><p>Zinc-ion capacitors (ZICs) have attracted great attention due to a series of advantages. However, the cathode materials are still the bottleneck for high-performance ZICs to be achieved. Therefore, ZIF-8-derived porous carbons are one of the most promising candidates but ZIF-8 nanoparticles with different sizes exhibited various electrochemical performances in ZICs. Herein, a series of monodispersed ZIF-8 nanoparticles are first prepared by a temperature-controlled process to fabricate the corresponding ZIF-8-based porous carbon nanoparticles with pre-designed sizes. The as-prepared materials have been tested as cathode materials in ZICs. Thus, their size effect allowed us to disclose its correlation with other factors such as ion transport/storage and capacitance. The results reveal that the optimal-sized porous carbon particles can effectively shorten the ion transport distance and accelerate the ion diffusion rate, resulting in lower electrical resistance, larger ion diffusion coefficients, and faster electron transport. The presented findings can facilitate the design of new advanced cathode materials paving the way for the development of high-performance cathode materials for ZICs in the future.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":" ","pages":"e2406187"},"PeriodicalIF":13.0000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202406187","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Zinc-ion capacitors (ZICs) have attracted great attention due to a series of advantages. However, the cathode materials are still the bottleneck for high-performance ZICs to be achieved. Therefore, ZIF-8-derived porous carbons are one of the most promising candidates but ZIF-8 nanoparticles with different sizes exhibited various electrochemical performances in ZICs. Herein, a series of monodispersed ZIF-8 nanoparticles are first prepared by a temperature-controlled process to fabricate the corresponding ZIF-8-based porous carbon nanoparticles with pre-designed sizes. The as-prepared materials have been tested as cathode materials in ZICs. Thus, their size effect allowed us to disclose its correlation with other factors such as ion transport/storage and capacitance. The results reveal that the optimal-sized porous carbon particles can effectively shorten the ion transport distance and accelerate the ion diffusion rate, resulting in lower electrical resistance, larger ion diffusion coefficients, and faster electron transport. The presented findings can facilitate the design of new advanced cathode materials paving the way for the development of high-performance cathode materials for ZICs in the future.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ZIF-8 衍生阴极材料对锌离子电容器性能的尺寸依赖性影响
锌离子电容器(ZIC)因其一系列优点而备受关注。然而,阴极材料仍然是实现高性能 ZIC 的瓶颈。因此,ZIF-8 衍生的多孔碳是最有前途的候选材料之一,但不同尺寸的 ZIF-8 纳米颗粒在 ZIC 中表现出不同的电化学性能。本文首先通过温控工艺制备了一系列单分散的 ZIF-8 纳米颗粒,并按照预先设计的尺寸制备了相应的基于 ZIF-8 的多孔碳纳米颗粒。制备的材料已作为 ZIC 的阴极材料进行了测试。因此,它们的尺寸效应使我们能够揭示其与离子传输/存储和电容等其他因素的相关性。结果表明,最佳尺寸的多孔碳颗粒能有效缩短离子传输距离,加快离子扩散速度,从而降低电阻,提高离子扩散系数,加快电子传输速度。这些发现有助于设计新的先进阴极材料,为未来开发 ZIC 的高性能阴极材料铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
期刊最新文献
A Highly Compatible Deep Eutectic Solvent-Based Poly(ethylene) Oxide Polymer Electrolyte to Enable the Stable Operation of 4.5 V Lithium Metal Batteries Supercrystal Engineering of Nanoarrows Enabled by Tailored Concavity (Small 47/2024) Recent Advances of Bio-Based Hydrogel Derived Interfacial Evaporator for Sustainable Water and Collaborative Energy Storage Applications (Small 47/2024) Copper-Graphene Composite (CGC) Conductors: Synthesis, Microstructure, and Electrical Performance (Small 47/2024) Multi-Biomarker Profiling for Precision Diagnosis of Lung Cancer (Small 47/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1