Algae-Derived Nacre-like Dielectric Bionanocomposite with High Loading Hexagonal Boron Nitride for Green Electronics.

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Nano Pub Date : 2024-11-19 DOI:10.1021/acsnano.4c09365
M A S R Saadi, Farzana Hasan Likhi, Methu Dev Nath, Rahul Jayan, Farhan Zahin, Md Shajedul Hoque Thakur, Yigao Yuan, Md Mahbubul Islam, Rahul Panat, Alamgir Karim, Pulickel M Ajayan, Muhammad M Rahman
{"title":"Algae-Derived Nacre-like Dielectric Bionanocomposite with High Loading Hexagonal Boron Nitride for Green Electronics.","authors":"M A S R Saadi, Farzana Hasan Likhi, Methu Dev Nath, Rahul Jayan, Farhan Zahin, Md Shajedul Hoque Thakur, Yigao Yuan, Md Mahbubul Islam, Rahul Panat, Alamgir Karim, Pulickel M Ajayan, Muhammad M Rahman","doi":"10.1021/acsnano.4c09365","DOIUrl":null,"url":null,"abstract":"<p><p>The surging demand for electronics is causing detrimental environmental consequences through massive electronic waste production. Urgently shifting toward renewable and eco-friendly materials is crucial for fostering a green circular economy. Herein, we develop a multifunctional bionanocomposite using an algae-derived carbohydrate biopolymer (alginate) and boron nitride nanosheet (BNNS) that can be readily employed as a multifunctional dielectric material. The adopted rational design principle includes spatial locking of superhigh loading of BNNS via hydrogel casting followed by layer-by-layer assembly via solvent evaporation, successive cross-link engineering, and hot pressing. We harness the hierarchical assembly of BNNS and the molecular interaction of alginates with BNNS to achieve synergistic material properties with excellent mechanical robustness (tensile strength ∼135 MPa, Young's modulus ∼18 GPa), flexibility, thermal conductivity (∼4.5 W m<sup>-1</sup> K<sup>-1</sup>), flame retardance, and dielectric properties (dielectric constant ∼7, dielectric strength ∼400 V/μm, and maximum energy density ∼4.33 J/cm<sup>3</sup>) that outperform traditional synthetic polymer dielectrics. Finally, we leverage the synergistic material properties of our engineered bionanocomposite to showcase its potential in green electronic applications, for example, supercapacitors and flexible interconnects. The supercapacitor device consisting of aerosol jet-printed single-walled carbon nanotube electrodes on our engineered bionanocomposite demonstrated a volumetric capacitance of ∼7 F/cm<sup>3</sup> and robust rate capability, while the printed silver interconnects maintained conductivity in various deformed states (i.e., bending or flexing).</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":" ","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c09365","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The surging demand for electronics is causing detrimental environmental consequences through massive electronic waste production. Urgently shifting toward renewable and eco-friendly materials is crucial for fostering a green circular economy. Herein, we develop a multifunctional bionanocomposite using an algae-derived carbohydrate biopolymer (alginate) and boron nitride nanosheet (BNNS) that can be readily employed as a multifunctional dielectric material. The adopted rational design principle includes spatial locking of superhigh loading of BNNS via hydrogel casting followed by layer-by-layer assembly via solvent evaporation, successive cross-link engineering, and hot pressing. We harness the hierarchical assembly of BNNS and the molecular interaction of alginates with BNNS to achieve synergistic material properties with excellent mechanical robustness (tensile strength ∼135 MPa, Young's modulus ∼18 GPa), flexibility, thermal conductivity (∼4.5 W m-1 K-1), flame retardance, and dielectric properties (dielectric constant ∼7, dielectric strength ∼400 V/μm, and maximum energy density ∼4.33 J/cm3) that outperform traditional synthetic polymer dielectrics. Finally, we leverage the synergistic material properties of our engineered bionanocomposite to showcase its potential in green electronic applications, for example, supercapacitors and flexible interconnects. The supercapacitor device consisting of aerosol jet-printed single-walled carbon nanotube electrodes on our engineered bionanocomposite demonstrated a volumetric capacitance of ∼7 F/cm3 and robust rate capability, while the printed silver interconnects maintained conductivity in various deformed states (i.e., bending or flexing).

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
藻类衍生的具有高负载六方氮化硼的珍珠质介电仿生复合材料,可用于绿色电子产品。
对电子产品的需求激增,产生了大量电子垃圾,对环境造成了有害影响。当务之急是转向使用可再生的环保材料,这对促进绿色循环经济至关重要。在本文中,我们利用藻类衍生的碳水化合物生物聚合物(藻酸盐)和氮化硼纳米片(BNNS)开发了一种多功能仿生复合材料,可随时用作多功能介电材料。所采用的合理设计原则包括通过水凝胶浇注锁定超高负载的 BNNS,然后通过溶剂蒸发、连续交联工程和热压逐层组装。我们利用 BNNS 的分层组装和海藻酸盐与 BNNS 的分子相互作用,实现了材料的协同特性,具有优异的机械坚固性(拉伸强度 ∼135 MPa,杨氏模量 ∼18 GPa)、柔韧性、导热性(∼4.5 W m-1 K-1)、阻燃性和介电特性(介电常数 ∼7,介电强度 ∼400 V/μm,最大能量密度 ∼4.33 J/cm3),这些性能均优于传统的合成聚合物介电材料。最后,我们利用工程仿生复合材料的协同材料特性,展示了其在绿色电子应用(如超级电容器和柔性互连)中的潜力。超级电容器装置由气溶胶喷射印刷的单壁碳纳米管电极组成,在我们的工程仿生复合材料上显示出 7 F/cm3 的体积电容和强大的速率能力,而印刷的银互连器件在各种变形状态(如弯曲或挠曲)下都能保持导电性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
期刊最新文献
In Situ Phase Transformation-Enabled Metal–Organic Frameworks for Efficient CO2 Electroreduction to Multicarbon Products in Strong Acidic Media Voltage-Gated Switching of Moiré Patterns in Epitaxial Molecular Crystals Correction to “Sequential Treatment of Bioresponsive Nanoparticles Elicits Antiangiogenesis and Apoptosis and Synergizes with a CD40 Agonist for Antitumor Immunity” Targeting Metastasis in Head and Neck Squamous Cell Carcinoma Using Follistatin mRNA Lipid Nanoparticles Photocatalytic Achmatowicz Rearrangement on Triphenylbenzene–Dimethoxyterephthaldehyde–Covalent Organic Framework-Mo for Converting Biomass-Derived Furfuryl Alcohol to Hydropyranone
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1