Dual Near-Infrared-Response S-Scheme Heterojunction with Asymmetric Adsorption Sites for Enhanced Nitrogen Photoreduction.

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2024-11-18 DOI:10.1002/adma.202416210
Jiaxin Li, Chaoqi Zhang, Tong Bao, Yamin Xi, Ling Yuan, Yingying Zou, Yin Bi, Chao Liu, Chengzhong Yu
{"title":"Dual Near-Infrared-Response S-Scheme Heterojunction with Asymmetric Adsorption Sites for Enhanced Nitrogen Photoreduction.","authors":"Jiaxin Li, Chaoqi Zhang, Tong Bao, Yamin Xi, Ling Yuan, Yingying Zou, Yin Bi, Chao Liu, Chengzhong Yu","doi":"10.1002/adma.202416210","DOIUrl":null,"url":null,"abstract":"<p><p>Photocatalytic nitrogen reduction reaction (PNRR) holds immense promise for sustainable ammonia (NH<sub>3</sub>) synthesis. However, few photocatalysts can utilize NIR light that carries over 50% of the solar energy for NH<sub>3</sub> production with high performance. Herein, a dual NIR-responsive S-scheme ZnCoS<sub>x</sub>/Fe<sub>3</sub>S<sub>4</sub> heterojunction photocatalyst is designed with asymmetric adsorption sites and excellent PNRR performance. The heterojunction possesses a hollow-on-hollow superstructure: Fe<sub>3</sub>S<sub>4</sub> nanocrystal-modified ZnCoS<sub>x</sub> nanocages as building blocks assemble into spindle-shaped particles with a spindle-like cavity. Both Fe<sub>3</sub>S<sub>4</sub> and ZnCoS<sub>x</sub> are NIR active, allowing efficient utilization of full-spectrum light. Moreover, an S-scheme heterojunction is constructed that promotes charge separation. In addition, the Fe/Co dual-metal sites at the interface enable an asymmetric side-on adsorption mode of N<sub>2</sub>, favoring the polarization and activation of N<sub>2</sub> molecules. In combination with the promoted mass transfer and active site exposure of hollow superstructure, a superior PNRR performance is achieved, with a high NH<sub>3</sub> evolution rate of 2523.4  µmol g<sup>-1</sup> h<sup>-1</sup>, an apparent quantum yield of 9.4% at 400 nm and 8% at 1000 nm, and a solar-to-chemical conversion efficiency of 0.32%. The work paves the way for the rational design of advanced heterojunction catalysts for PNRR.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":" ","pages":"e2416210"},"PeriodicalIF":27.4000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202416210","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Photocatalytic nitrogen reduction reaction (PNRR) holds immense promise for sustainable ammonia (NH3) synthesis. However, few photocatalysts can utilize NIR light that carries over 50% of the solar energy for NH3 production with high performance. Herein, a dual NIR-responsive S-scheme ZnCoSx/Fe3S4 heterojunction photocatalyst is designed with asymmetric adsorption sites and excellent PNRR performance. The heterojunction possesses a hollow-on-hollow superstructure: Fe3S4 nanocrystal-modified ZnCoSx nanocages as building blocks assemble into spindle-shaped particles with a spindle-like cavity. Both Fe3S4 and ZnCoSx are NIR active, allowing efficient utilization of full-spectrum light. Moreover, an S-scheme heterojunction is constructed that promotes charge separation. In addition, the Fe/Co dual-metal sites at the interface enable an asymmetric side-on adsorption mode of N2, favoring the polarization and activation of N2 molecules. In combination with the promoted mass transfer and active site exposure of hollow superstructure, a superior PNRR performance is achieved, with a high NH3 evolution rate of 2523.4  µmol g-1 h-1, an apparent quantum yield of 9.4% at 400 nm and 8% at 1000 nm, and a solar-to-chemical conversion efficiency of 0.32%. The work paves the way for the rational design of advanced heterojunction catalysts for PNRR.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有不对称吸附位点的双近红外响应 S-Scheme 异质结,用于增强氮光电还原。
光催化氮还原反应(PNRR)在可持续合成氨(NH3)方面前景广阔。然而,很少有光催化剂能高效利用携带 50% 以上太阳能的近红外光来生产 NH3。本文设计了一种双近红外响应 S 型 ZnCoSx/Fe3S4 异质结光催化剂,它具有不对称吸附位点和优异的 PNRR 性能。异质结具有空心对空心的上层结构:以 Fe3S4 纳米晶修饰的 ZnCoSx 纳米笼为构件,组装成具有纺锤形空腔的纺锤形颗粒。Fe3S4 和 ZnCoSx 都具有近红外活性,可有效利用全光谱光。此外,构建的 S 型异质结还能促进电荷分离。此外,界面上的铁/钴双金属位点实现了不对称的 N2 侧吸附模式,有利于 N2 分子的极化和活化。结合中空上层结构促进的传质和活性位点暴露,实现了卓越的 PNRR 性能,NH3 演化率高达 2523.4 µmol g-1 h-1,400 纳米波长下的表观量子产率为 9.4%,1000 纳米波长下的表观量子产率为 8%,太阳能-化学转换效率为 0.32%。这项工作为合理设计用于 PNRR 的先进异质结催化剂铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
Assessing the Effect of a Schwarz P Surface on the Oxygen Electroreduction Performance of Porous Single-Atom Catalysts Dual-Function Self-Assembled Molecules as Hole-Transport Layers for Thermally Evaporated High-Efficiency Blue Perovskite Light-Emitting Diodes Graphene Readout Silicon-Based Microtube Photodetectors for Encrypted Visible Light Communication Aggregate Science: from Molecules, beyond Molecules Upper Layer-Modulated Pseudo Planar Heterojunction with Metal Complex Acceptor for Efficient and Stable Organic Photovoltaics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1