{"title":"Comparative analysis of differentially expressed genes and transcripts in the ovary of yak in estrus and anestrus.","authors":"Chongfa Yang, Yahua Yang, Bingzhu Zhao, Enyu Gao, Hao Chen, Yang Li, Junyuan Ma, Jine Wang, Songming Hu, Xiaochen Song, Ying Chen, Gengsacairang Yang, Shengdong Huo, Wenxue Luo","doi":"10.1080/10495398.2024.2427757","DOIUrl":null,"url":null,"abstract":"<p><p>Since most yaks have a long postpartum anestrus period, postpartum anestrus is the main factor affecting the reproductive efficiency of yaks. In this study, the third-generation sequencing technology was used to successfully screen differentially expressed genes (DEGs) and differentially expressed transcripts (DETs) in the ovarian tissues of yaks during estrus and anestrus. The functional references of DEGs and DETs were Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and Clusters of Orthologous Genes database. A total of 1149 DEGs and 2294 DETs were successfully identified. These DEGs and DETs were mainly related to biological processes such as \"reproduction\", \"reproductive process\", \"metabolic process\" and \"rhythmic process\". Kisspeptin-G protein-coupled receptor was found to be involved in regulating the reproductive cycle of yaks. DEGs and DETs were also related to gonadotropin-releasing hormone (GnRH) signaling pathways such as oocyte meiosis, estrogen signaling pathway, and progesterone-mediated induced oocyte maturation. The results showed that <i>SIRT1</i>, <i>CSNK1A1</i>, <i>SLIT3</i>, <i>INHBA</i>, <i>INSL3</i>, <i>ZP2</i>, <i>Clock</i>, <i>BMP15</i>, <i>Bmal1</i>, <i>KISS1</i>, and <i>LCHGR</i> regulate the postpartum quiescent state and the reproductive cycle of yaks. This study will help to further clarify the reproductive mechanism of yaks at the molecular level and provide certain assistance for the development of animal husbandry.</p>","PeriodicalId":7836,"journal":{"name":"Animal Biotechnology","volume":"35 1","pages":"2427757"},"PeriodicalIF":1.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Biotechnology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/10495398.2024.2427757","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Since most yaks have a long postpartum anestrus period, postpartum anestrus is the main factor affecting the reproductive efficiency of yaks. In this study, the third-generation sequencing technology was used to successfully screen differentially expressed genes (DEGs) and differentially expressed transcripts (DETs) in the ovarian tissues of yaks during estrus and anestrus. The functional references of DEGs and DETs were Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and Clusters of Orthologous Genes database. A total of 1149 DEGs and 2294 DETs were successfully identified. These DEGs and DETs were mainly related to biological processes such as "reproduction", "reproductive process", "metabolic process" and "rhythmic process". Kisspeptin-G protein-coupled receptor was found to be involved in regulating the reproductive cycle of yaks. DEGs and DETs were also related to gonadotropin-releasing hormone (GnRH) signaling pathways such as oocyte meiosis, estrogen signaling pathway, and progesterone-mediated induced oocyte maturation. The results showed that SIRT1, CSNK1A1, SLIT3, INHBA, INSL3, ZP2, Clock, BMP15, Bmal1, KISS1, and LCHGR regulate the postpartum quiescent state and the reproductive cycle of yaks. This study will help to further clarify the reproductive mechanism of yaks at the molecular level and provide certain assistance for the development of animal husbandry.
期刊介绍:
Biotechnology can be defined as any technique that uses living organisms (or parts of organisms like cells, genes, proteins) to make or modify products, to improve plants, animals or microorganisms for a specific use. Animal Biotechnology publishes research on the identification and manipulation of genes and their products, stressing applications in domesticated animals. The journal publishes full-length articles and short research communications, as well as comprehensive reviews. The journal also provides a forum for regulatory or scientific issues related to cell and molecular biology applied to animal biotechnology.
Submissions on the following topics are particularly welcome:
- Applied microbiology, immunogenetics and antibiotic resistance
- Genome engineering and animal models
- Comparative genomics
- Gene editing and CRISPRs
- Reproductive biotechnologies
- Synthetic biology and design of new genomes