{"title":"A novel perlucin with immune regulatory functions protects Litopenaeus vannamei against Vibrio parahaemolyticus infection.","authors":"Zi-Ang Wang, Linwei Yang, Zexu Zhao, Shaoping Weng, Jianguo He, Xiaopeng Xu","doi":"10.1016/j.fsi.2024.110028","DOIUrl":null,"url":null,"abstract":"<p><p>C-type lectins (CTLs), a class of carbohydrate-recognizing glycoproteins, play a vital role in immune response against bacterial infection. Vibrio parahaemolyticus is a major bacterial pathogen in shrimp, causing huge economic losses to shrimp farming. The role of the CTL family in anti-V. parahaemolyticus immunity requires further exploration. In this study, a novel CTL named Perlucin with immune regulatory functions was characterized from Litopenaeus vannamei. Perlucin was highly expressed in the muscle and hepatopancreas of healthy L. vannamei. The mRNA levels of Perlucin were significantly upregulated after LPS stimulation, and V. parahaemolyticus, Staphylococcus aureus and Aspergillus niger infections. Silencing of Perlucin by injection of specific dsRNA decreased the survival rate of V. parahaemolyticus-infected shrimp and increased the bacterial load of V. parahaemolyticus in tissues, while injection of recombinant Perlucin protein had the opposite effect. Moreover, silencing of Perlucin significantly affected the expression of multiple immune-related genes, including immune signaling components and downstream effector genes, suggesting that Perlucin is involved in immune regulation. This suggests that perlucin plays a crucial role in regulating humoral immune response against V. parahaemolyticus infection in shrimp.</p>","PeriodicalId":12127,"journal":{"name":"Fish & shellfish immunology","volume":" ","pages":"110028"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fish & shellfish immunology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.fsi.2024.110028","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0
Abstract
C-type lectins (CTLs), a class of carbohydrate-recognizing glycoproteins, play a vital role in immune response against bacterial infection. Vibrio parahaemolyticus is a major bacterial pathogen in shrimp, causing huge economic losses to shrimp farming. The role of the CTL family in anti-V. parahaemolyticus immunity requires further exploration. In this study, a novel CTL named Perlucin with immune regulatory functions was characterized from Litopenaeus vannamei. Perlucin was highly expressed in the muscle and hepatopancreas of healthy L. vannamei. The mRNA levels of Perlucin were significantly upregulated after LPS stimulation, and V. parahaemolyticus, Staphylococcus aureus and Aspergillus niger infections. Silencing of Perlucin by injection of specific dsRNA decreased the survival rate of V. parahaemolyticus-infected shrimp and increased the bacterial load of V. parahaemolyticus in tissues, while injection of recombinant Perlucin protein had the opposite effect. Moreover, silencing of Perlucin significantly affected the expression of multiple immune-related genes, including immune signaling components and downstream effector genes, suggesting that Perlucin is involved in immune regulation. This suggests that perlucin plays a crucial role in regulating humoral immune response against V. parahaemolyticus infection in shrimp.
期刊介绍:
Fish and Shellfish Immunology rapidly publishes high-quality, peer-refereed contributions in the expanding fields of fish and shellfish immunology. It presents studies on the basic mechanisms of both the specific and non-specific defense systems, the cells, tissues, and humoral factors involved, their dependence on environmental and intrinsic factors, response to pathogens, response to vaccination, and applied studies on the development of specific vaccines for use in the aquaculture industry.