Non parametric differential network analysis: a tool for unveiling specific molecular signatures.

IF 2.9 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS BMC Bioinformatics Pub Date : 2024-11-18 DOI:10.1186/s12859-024-05969-2
Pietro Hiram Guzzi, Arkaprava Roy, Marianna Milano, Pierangelo Veltri
{"title":"Non parametric differential network analysis: a tool for unveiling specific molecular signatures.","authors":"Pietro Hiram Guzzi, Arkaprava Roy, Marianna Milano, Pierangelo Veltri","doi":"10.1186/s12859-024-05969-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The rewiring of molecular interactions in various conditions leads to distinct phenotypic outcomes. Differential network analysis (DINA) is dedicated to exploring these rewirings within gene and protein networks. Leveraging statistical learning and graph theory, DINA algorithms scrutinize alterations in interaction patterns derived from experimental data.</p><p><strong>Results: </strong>Introducing a novel approach to differential network analysis, we incorporate differential gene expression based on sex and gender attributes. We hypothesize that gene expression can be accurately represented through non-Gaussian processes. Our methodology involves quantifying changes in non-parametric correlations among gene pairs and expression levels of individual genes.</p><p><strong>Conclusions: </strong>Applying our method to public expression datasets concerning diabetes mellitus and atherosclerosis in liver tissue, we identify gender-specific differential networks. Results underscore the biological relevance of our approach in uncovering meaningful molecular distinctions.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"25 1","pages":"359"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11575037/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-024-05969-2","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The rewiring of molecular interactions in various conditions leads to distinct phenotypic outcomes. Differential network analysis (DINA) is dedicated to exploring these rewirings within gene and protein networks. Leveraging statistical learning and graph theory, DINA algorithms scrutinize alterations in interaction patterns derived from experimental data.

Results: Introducing a novel approach to differential network analysis, we incorporate differential gene expression based on sex and gender attributes. We hypothesize that gene expression can be accurately represented through non-Gaussian processes. Our methodology involves quantifying changes in non-parametric correlations among gene pairs and expression levels of individual genes.

Conclusions: Applying our method to public expression datasets concerning diabetes mellitus and atherosclerosis in liver tissue, we identify gender-specific differential networks. Results underscore the biological relevance of our approach in uncovering meaningful molecular distinctions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非参数差异网络分析:揭示特定分子特征的工具。
背景:在各种条件下,分子相互作用的重构会导致不同的表型结果。差异网络分析(DINA)致力于探索基因和蛋白质网络中的这些重配。利用统计学习和图论,差分网络分析算法可以仔细检查实验数据中相互作用模式的变化:我们引入了一种新颖的差异网络分析方法,将基于性和性别属性的差异基因表达纳入其中。我们假设,基因表达可以通过非高斯过程得到准确表达。我们的方法包括量化基因对之间非参数相关性的变化以及单个基因的表达水平:结论:将我们的方法应用于有关糖尿病和肝组织动脉粥样硬化的公开表达数据集,我们发现了性别差异网络。结果强调了我们的方法在发现有意义的分子差异方面的生物学相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Bioinformatics
BMC Bioinformatics 生物-生化研究方法
CiteScore
5.70
自引率
3.30%
发文量
506
审稿时长
4.3 months
期刊介绍: BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology. BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.
期刊最新文献
scEGOT: single-cell trajectory inference framework based on entropic Gaussian mixture optimal transport. MISDP: multi-task fusion visit interval for sequential diagnosis prediction. Prediction of miRNA-disease associations based on PCA and cascade forest. DeepMiRBP: a hybrid model for predicting microRNA-protein interactions based on transfer learning and cosine similarity. DNEA: an R package for fast and versatile data-driven network analysis of metabolomics data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1