The impact of prenatal exposure to fine particulate matter and its components on maternal and neonatal thyroid function and birth weight: a prospective cohort study.
{"title":"The impact of prenatal exposure to fine particulate matter and its components on maternal and neonatal thyroid function and birth weight: a prospective cohort study.","authors":"Sun Zhang, Jiahui Li, Siyu Zhang, Siwei Dai, Chen Sun, Huiya Ma, Kai Huang, Maolin Chen, Guopeng Gao, Chengyang Hu, Xiujun Zhang","doi":"10.1007/s10653-024-02303-w","DOIUrl":null,"url":null,"abstract":"<p><p>Maternal and child health has garnered considerable attention recently. The effects of prenatal exposure to PM<sub>2.5</sub> and its components on thyroid function in both mothers and fetuses, as well as on offspring birth weight, remain unexplored. This study involved 446 mother-infant pairs from a cohort study in Ma'anshan, China, during 2021-2022. Air pollution data were obtained from the Tracking Air Pollution (TAP) project. Thyroid hormone levels (FT<sub>3</sub>, FT<sub>4</sub>, and TSH) were measured in maternal blood samples taken at various pregnancy stages and in cord blood. We employed multiple analytical methods to evaluate the effects of PM<sub>2.5</sub> and its components on maternal thyroid function and birth weight z-score (BWz). The GLR analysis reveals that the effect of PM<sub>2.5</sub> and its components on BWz differs according to the pregnancy stage and the specific pollutant involved. During the late pregnancy, increased exposure to PM<sub>2.5</sub> and specific components (for instance, <math> <mrow><msubsup><mtext>NO</mtext> <mrow><mn>3</mn></mrow> <mi>_</mi></msubsup> <mrow></mrow></mrow> </math> and <math><msubsup><mtext>SO</mtext> <mrow><mn>4</mn></mrow> <mrow><mn>2</mn> <mo>-</mo></mrow> </msubsup> </math> ) was correlated with elevated maternal FT<sub>4</sub> levels (p < 0.05) and reduced BWz (p < 0.05). QgC results illustrated a notable negative correlation between heightened PM<sub>2.5</sub> exposure and BWz in late pregnancy. BKMR analysis confirmed that overall exposure to PM<sub>2.5</sub> and its components negatively impacted BWz during the third trimester. Mediation analysis showed that changes in maternal FT<sub>4</sub> levels accounted for approximately 8.52%, 8.05%, and 8.13% of the negative effects on BWz from exposure to <math><msubsup><mtext>NH</mtext> <mrow><mn>4</mn></mrow> <mo>+</mo></msubsup> </math> , <math><msubsup><mtext>NO</mtext> <mrow><mn>3</mn></mrow> <mi>_</mi></msubsup> </math> and <math><msubsup><mtext>SO</mtext> <mrow><mn>4</mn></mrow> <mrow><mn>2</mn> <mo>-</mo></mrow> </msubsup> </math> , respectively (p < 0.05). In healthy pregnancies, exposure to PM<sub>2.5</sub> and its components during the late pregnancy is linked to alterations in maternal thyroid hormone levels, potentially leading to reduced birth weight. Maternal FT<sub>4</sub> levels may mediate the connection between PM<sub>2.5</sub> components exposure and reduced the weight of offspring.</p>","PeriodicalId":11759,"journal":{"name":"Environmental Geochemistry and Health","volume":"46 12","pages":"520"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Geochemistry and Health","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10653-024-02303-w","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Maternal and child health has garnered considerable attention recently. The effects of prenatal exposure to PM2.5 and its components on thyroid function in both mothers and fetuses, as well as on offspring birth weight, remain unexplored. This study involved 446 mother-infant pairs from a cohort study in Ma'anshan, China, during 2021-2022. Air pollution data were obtained from the Tracking Air Pollution (TAP) project. Thyroid hormone levels (FT3, FT4, and TSH) were measured in maternal blood samples taken at various pregnancy stages and in cord blood. We employed multiple analytical methods to evaluate the effects of PM2.5 and its components on maternal thyroid function and birth weight z-score (BWz). The GLR analysis reveals that the effect of PM2.5 and its components on BWz differs according to the pregnancy stage and the specific pollutant involved. During the late pregnancy, increased exposure to PM2.5 and specific components (for instance, and ) was correlated with elevated maternal FT4 levels (p < 0.05) and reduced BWz (p < 0.05). QgC results illustrated a notable negative correlation between heightened PM2.5 exposure and BWz in late pregnancy. BKMR analysis confirmed that overall exposure to PM2.5 and its components negatively impacted BWz during the third trimester. Mediation analysis showed that changes in maternal FT4 levels accounted for approximately 8.52%, 8.05%, and 8.13% of the negative effects on BWz from exposure to , and , respectively (p < 0.05). In healthy pregnancies, exposure to PM2.5 and its components during the late pregnancy is linked to alterations in maternal thyroid hormone levels, potentially leading to reduced birth weight. Maternal FT4 levels may mediate the connection between PM2.5 components exposure and reduced the weight of offspring.
期刊介绍:
Environmental Geochemistry and Health publishes original research papers and review papers across the broad field of environmental geochemistry. Environmental geochemistry and health establishes and explains links between the natural or disturbed chemical composition of the earth’s surface and the health of plants, animals and people.
Beneficial elements regulate or promote enzymatic and hormonal activity whereas other elements may be toxic. Bedrock geochemistry controls the composition of soil and hence that of water and vegetation. Environmental issues, such as pollution, arising from the extraction and use of mineral resources, are discussed. The effects of contaminants introduced into the earth’s geochemical systems are examined. Geochemical surveys of soil, water and plants show how major and trace elements are distributed geographically. Associated epidemiological studies reveal the possibility of causal links between the natural or disturbed geochemical environment and disease. Experimental research illuminates the nature or consequences of natural or disturbed geochemical processes.
The journal particularly welcomes novel research linking environmental geochemistry and health issues on such topics as: heavy metals (including mercury), persistent organic pollutants (POPs), and mixed chemicals emitted through human activities, such as uncontrolled recycling of electronic-waste; waste recycling; surface-atmospheric interaction processes (natural and anthropogenic emissions, vertical transport, deposition, and physical-chemical interaction) of gases and aerosols; phytoremediation/restoration of contaminated sites; food contamination and safety; environmental effects of medicines; effects and toxicity of mixed pollutants; speciation of heavy metals/metalloids; effects of mining; disturbed geochemistry from human behavior, natural or man-made hazards; particle and nanoparticle toxicology; risk and the vulnerability of populations, etc.