Manual data labeling, radiology, and artificial intelligence: It is a dirty job, but someone has to do it

IF 2.1 4区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Magnetic resonance imaging Pub Date : 2024-11-16 DOI:10.1016/j.mri.2024.110280
Teodoro Martín-Noguerol , Pilar López-Úbeda , Félix Paulano-Godino , Antonio Luna
{"title":"Manual data labeling, radiology, and artificial intelligence: It is a dirty job, but someone has to do it","authors":"Teodoro Martín-Noguerol ,&nbsp;Pilar López-Úbeda ,&nbsp;Félix Paulano-Godino ,&nbsp;Antonio Luna","doi":"10.1016/j.mri.2024.110280","DOIUrl":null,"url":null,"abstract":"<div><div>In this letter to the editor, authors highlight the key role of data labeling in training AI models for medical imaging, discussing the complexities, resource demands, costs, and the relevance of quality control in the labeling process including the potential and limitations of AI tools for automated labeling. The article underlines that labeling quality is essential for the accuracy of AI models and the safety of their clinical applications, highlighting the legal responsibilities of labelers in cases where improper labeling leads to AI errors.</div></div>","PeriodicalId":18165,"journal":{"name":"Magnetic resonance imaging","volume":"116 ","pages":"Article 110280"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic resonance imaging","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0730725X24002613","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

In this letter to the editor, authors highlight the key role of data labeling in training AI models for medical imaging, discussing the complexities, resource demands, costs, and the relevance of quality control in the labeling process including the potential and limitations of AI tools for automated labeling. The article underlines that labeling quality is essential for the accuracy of AI models and the safety of their clinical applications, highlighting the legal responsibilities of labelers in cases where improper labeling leads to AI errors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人工数据标注、放射学和人工智能:这是一项肮脏的工作,但必须有人去做。
在这封致编辑的信中,作者强调了数据标注在医学影像人工智能模型训练中的关键作用,讨论了标注过程中的复杂性、资源需求、成本和质量控制的相关性,包括自动标注人工智能工具的潜力和局限性。文章强调,标注质量对人工智能模型的准确性及其临床应用的安全性至关重要,并强调了在标注不当导致人工智能错误的情况下标注者的法律责任。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Magnetic resonance imaging
Magnetic resonance imaging 医学-核医学
CiteScore
4.70
自引率
4.00%
发文量
194
审稿时长
83 days
期刊介绍: Magnetic Resonance Imaging (MRI) is the first international multidisciplinary journal encompassing physical, life, and clinical science investigations as they relate to the development and use of magnetic resonance imaging. MRI is dedicated to both basic research, technological innovation and applications, providing a single forum for communication among radiologists, physicists, chemists, biochemists, biologists, engineers, internists, pathologists, physiologists, computer scientists, and mathematicians.
期刊最新文献
Preclinical validation of a metasurface-inspired conformal elliptical-cylinder resonator for wrist MRI at 1.5 T. P53 status combined with MRI findings for prognosis prediction of single hepatocellular carcinoma. Predicting progression in triple-negative breast cancer patients undergoing neoadjuvant chemotherapy: Insights from peritumoral radiomics. Deep learning radiomics nomograms predict Isocitrate dehydrogenase (IDH) genotypes in brain glioma: A multicenter study. Reliability of post-contrast deep learning-based highly accelerated cardiac cine MRI for the assessment of ventricular function.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1