Citrus trifoliata extract -loaded chitosan nanoparticles as a potential treatment for osteoarthritis: An in vitro evaluation.

IF 2.3 4区 医学 Q3 ENGINEERING, BIOMEDICAL Journal of Biomaterials Applications Pub Date : 2024-11-19 DOI:10.1177/08853282241299243
Li Zhang, Mingming Yang, Saman Jalili
{"title":"Citrus trifoliata extract -loaded chitosan nanoparticles as a potential treatment for osteoarthritis: An in vitro evaluation.","authors":"Li Zhang, Mingming Yang, Saman Jalili","doi":"10.1177/08853282241299243","DOIUrl":null,"url":null,"abstract":"<p><p>Osteoarthritis (OA) presents a significant global health burden, necessitating innovative therapeutic strategies to address its multifaceted challenges. This study explores the potential of <i>Citrus trifoliata</i> extract-loaded chitosan nanoparticles (CTECNPs) as a novel treatment modality for OA. The encapsulation of <i>Citrus trifoliata</i> extract (CTE) within chitosan nanoparticles offers advantages such as enhanced bioavailability, sustained release kinetics, and targeted delivery to affected joints. In vitro evaluations demonstrate the biocompatibility and anti-inflammatory properties of CTECNPs, with significant anti-inflammatory and antioxidative effects observed. Moreover, in vivo studies in an OA-induced mouse model reveal promising therapeutic outcomes, including improvements in histological features and locomotor function. These findings highlight the potential of CTECNPs as a promising therapeutic approach for OA, offering hope for improved patient outcomes and quality of life. Further research is warranted to elucidate additional signaling pathways and potential synergistic effects of CTECNPs in OA management.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"8853282241299243"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/08853282241299243","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Osteoarthritis (OA) presents a significant global health burden, necessitating innovative therapeutic strategies to address its multifaceted challenges. This study explores the potential of Citrus trifoliata extract-loaded chitosan nanoparticles (CTECNPs) as a novel treatment modality for OA. The encapsulation of Citrus trifoliata extract (CTE) within chitosan nanoparticles offers advantages such as enhanced bioavailability, sustained release kinetics, and targeted delivery to affected joints. In vitro evaluations demonstrate the biocompatibility and anti-inflammatory properties of CTECNPs, with significant anti-inflammatory and antioxidative effects observed. Moreover, in vivo studies in an OA-induced mouse model reveal promising therapeutic outcomes, including improvements in histological features and locomotor function. These findings highlight the potential of CTECNPs as a promising therapeutic approach for OA, offering hope for improved patient outcomes and quality of life. Further research is warranted to elucidate additional signaling pathways and potential synergistic effects of CTECNPs in OA management.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三叶柑橘提取物负载壳聚糖纳米粒子作为骨关节炎的一种潜在治疗方法:体外评估
骨关节炎(OA)给全球健康带来沉重负担,需要创新的治疗策略来应对其多方面的挑战。本研究探讨了三叶柑橘提取物负载壳聚糖纳米粒子(CTECNPs)作为一种新型治疗 OA 方法的潜力。将三叶柑橘提取物(CTE)封装在壳聚糖纳米颗粒中具有多种优势,如生物利用度提高、释放动力学持续、可定向输送到受影响的关节。体外评估证明了 CTECNPs 的生物相容性和抗炎特性,并观察到了显著的抗炎和抗氧化效果。此外,在 OA 诱导的小鼠模型中进行的体内研究也显示出良好的治疗效果,包括组织学特征和运动功能的改善。这些发现凸显了 CTECNPs 作为治疗 OA 的一种有前途的方法的潜力,为改善患者的治疗效果和生活质量带来了希望。我们有必要开展进一步研究,以阐明 CTECNPs 在治疗 OA 方面的其他信号通路和潜在协同作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Biomaterials Applications
Journal of Biomaterials Applications 工程技术-材料科学:生物材料
CiteScore
5.10
自引率
3.40%
发文量
144
审稿时长
1.5 months
期刊介绍: The Journal of Biomaterials Applications is a fully peer reviewed international journal that publishes original research and review articles that emphasize the development, manufacture and clinical applications of biomaterials. Peer-reviewed articles by biomedical specialists from around the world cover: New developments in biomaterials, R&D, properties and performance, evaluation and applications Applications in biomedical materials and devices - from sutures and wound dressings to biosensors and cardiovascular devices Current findings in biological compatibility/incompatibility of biomaterials The Journal of Biomaterials Applications publishes original articles that emphasize the development, manufacture and clinical applications of biomaterials. Biomaterials continue to be one of the most rapidly growing areas of research in plastics today and certainly one of the biggest technical challenges, since biomaterial performance is dependent on polymer compatibility with the aggressive biological environment. The Journal cuts across disciplines and focuses on medical research and topics that present the broadest view of practical applications of biomaterials in actual clinical use. The Journal of Biomaterial Applications is devoted to new and emerging biomaterials technologies, particularly focusing on the many applications which are under development at industrial biomedical and polymer research facilities, as well as the ongoing activities in academic, medical and applied clinical uses of devices.
期刊最新文献
Monoclonal antibodies against jellyfish collagen. Citrus trifoliata extract -loaded chitosan nanoparticles as a potential treatment for osteoarthritis: An in vitro evaluation. 3D printed sodium alginate/gelatin/tannic acid/calcium chloride scaffolds laden bone marrow mesenchymal stem cells to repair defective thyroid cartilage plate. Antibacterial nonwoven materials in medicine and healthcare. A nanofibrous polycaprolactone/collagen neural guidance channel filled with sciatic allogeneic schwann cells and platelet-rich plasma for sciatic nerve repair.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1