首页 > 最新文献

Journal of Biomaterials Applications最新文献

英文 中文
Comprehensive review of 3D printing techniques emphasizing thermal characterization in biomedical prototyping. 全面回顾 3D 打印技术,强调生物医学原型制作中的热特性分析。
IF 2.3 4区 医学 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2025-01-12 DOI: 10.1177/08853282251314672
Jayeeta Chattopadhyay, Nimmy Srivastava, Tara Sankar Pathak

The rapid advancement of 3D printing technology has revolutionized biomedical engineering, enabling the creation of complex and personalized prototypes. Thermal properties play a crucial role in the performance and safety of these biomedical devices. Understanding their thermal behavior is essential for ensuring their effectiveness, reliability, and compatibility with the human body. This review article aims to provide a comprehensive overview of the thermal properties of 3D printed biomedical prototypes. It categorizes these prototypes based on thermal characteristics, examines the thermal attributes of various 3D printing materials, explores the thermal considerations for different biomedical devices, and identifies the challenges and future prospects in this dynamic field.

3D打印技术的快速发展彻底改变了生物医学工程,使复杂和个性化原型的创建成为可能。热性能对这些生物医学设备的性能和安全性起着至关重要的作用。了解它们的热行为对于确保它们的有效性、可靠性和与人体的相容性至关重要。这篇综述文章旨在提供3D打印生物医学原型的热性能的全面概述。它根据热特性对这些原型进行了分类,检查了各种3D打印材料的热属性,探讨了不同生物医学设备的热考虑因素,并确定了这一动态领域的挑战和未来前景。
{"title":"Comprehensive review of 3D printing techniques emphasizing thermal characterization in biomedical prototyping.","authors":"Jayeeta Chattopadhyay, Nimmy Srivastava, Tara Sankar Pathak","doi":"10.1177/08853282251314672","DOIUrl":"https://doi.org/10.1177/08853282251314672","url":null,"abstract":"<p><p>The rapid advancement of 3D printing technology has revolutionized biomedical engineering, enabling the creation of complex and personalized prototypes. Thermal properties play a crucial role in the performance and safety of these biomedical devices. Understanding their thermal behavior is essential for ensuring their effectiveness, reliability, and compatibility with the human body. This review article aims to provide a comprehensive overview of the thermal properties of 3D printed biomedical prototypes. It categorizes these prototypes based on thermal characteristics, examines the thermal attributes of various 3D printing materials, explores the thermal considerations for different biomedical devices, and identifies the challenges and future prospects in this dynamic field.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"8853282251314672"},"PeriodicalIF":2.3,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142970922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multifunctional electrospinning periosteum: Development status and prospect. 多功能静电纺丝骨膜:发展现状与展望。
IF 2.3 4区 医学 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2025-01-11 DOI: 10.1177/08853282251315186
Jinli Zhu, Meifeng Li, Shuoshuo Yang, Yang Zou, Yonggang Lv

In the repair of large bone defects, loss of the periosteum can result in diminished osteoinductive activity, nonunion, and incomplete regeneration of the bone structure, ultimately compromising the efficiency of bone regeneration. Therefore, the research and development of tissue-engineered periosteum which can replace the periosteum function has become the focus of current research. The functionalized electrospinning periosteum is expected to mimic the natural periosteum and enhance bone repair processes more effectively. This review explores the construction strategies for functionalized electrospun periosteum from the following perspectives: ⅰ) bioactive factor modification (bone morphogenetic protein-2 (BMP-2), vascular endothelial growth factor (VEGF) etc.), ⅱ) inorganic compound modification, ⅲ) drug modification, ⅳ) artificial periosteum in response to physical stimuli. Furthermore, the construction of artificial periosteum through electrospinning, in conjunction with other strategies, is also analyzed. Finally, the current challenges and prospects for the development of electrospinning periosteum are also discussed.

在修复大面积骨缺损时,骨膜丢失可导致骨诱导活性降低、骨不愈合和骨结构再生不完全,最终影响骨再生的效率。因此,研究和开发可替代骨膜功能的组织工程骨膜已成为当前研究的热点。功能化的静电纺丝骨膜有望模拟天然骨膜,更有效地促进骨修复过程。本文从生物活性因子修饰(骨形态发生蛋白-2 (BMP-2)、血管内皮生长因子(VEGF)等)、无机化合物修饰、药物修饰、人工骨膜响应物理刺激等方面探讨了功能化电纺膜的构建策略。此外,还分析了静电纺丝法构建人工骨膜的方法,并与其他方法相结合。最后,对静电纺丝骨膜目前面临的挑战和发展前景进行了讨论。
{"title":"Multifunctional electrospinning periosteum: Development status and prospect.","authors":"Jinli Zhu, Meifeng Li, Shuoshuo Yang, Yang Zou, Yonggang Lv","doi":"10.1177/08853282251315186","DOIUrl":"https://doi.org/10.1177/08853282251315186","url":null,"abstract":"<p><p>In the repair of large bone defects, loss of the periosteum can result in diminished osteoinductive activity, nonunion, and incomplete regeneration of the bone structure, ultimately compromising the efficiency of bone regeneration. Therefore, the research and development of tissue-engineered periosteum which can replace the periosteum function has become the focus of current research. The functionalized electrospinning periosteum is expected to mimic the natural periosteum and enhance bone repair processes more effectively. This review explores the construction strategies for functionalized electrospun periosteum from the following perspectives: ⅰ) bioactive factor modification (bone morphogenetic protein-2 (BMP-2), vascular endothelial growth factor (VEGF) etc.), ⅱ) inorganic compound modification, ⅲ) drug modification, ⅳ) artificial periosteum in response to physical stimuli. Furthermore, the construction of artificial periosteum through electrospinning, in conjunction with other strategies, is also analyzed. Finally, the current challenges and prospects for the development of electrospinning periosteum are also discussed.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"8853282251315186"},"PeriodicalIF":2.3,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142965038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of composition and surfactant-templating on mesoporous bioactive glasses structural evolution, bioactivity, and drug delivery property. 组成和表面活性剂模板对介孔生物活性玻璃结构演变、生物活性和药物传递特性的影响。
IF 2.3 4区 医学 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2025-01-08 DOI: 10.1177/08853282241312040
Dana Almasri, Yaser Dahman

This study explores mesoporous bioactive glasses (MBGs) that show promise as advanced therapeutic delivery platforms owing to their tailorable porous properties enabling enhanced drug loading capacity and biomimetic chemistry for localized, sustained release. This work systematically investigates the complex relationship between MBG composition and surfactant templating on structural evolution, in vitro bioactive response, resultant drug loading efficiency and release. A total of 12 samples of sol-gel-derived MBG were synthesized using cationic and non-ionic structure-directing agents (cetyltrimethylammonium bromide, Pluronic F127 and P123) while modulating the SiO2/CaO content, generating MBG with surface areas of 60-695 m2/g. Electron microscopy and nitrogen desorption studies verified the successful synthesis of the 12 ordered MBG formulations. Assessment of hydroxyapatite conversion kinetics via FTIR spectroscopy and SEM demonstrated accelerated deposition for 70-80% SiO2 formulations, independent of the surfactant used. However, the templating agent had an impact on drug loading as observed in this study where MBG synthesized by the templating agent Pluronic P123 had higher drug loading compared to the other surfactants. To determine the drug release mechanisms, the in vitro kinetic profiles were fitted to various mathematical models including ze-ro. Most compositions exhibited release properties closest to zero-order, indicating a concentration-independent drug elution rate. These results in this study explain the relationship between tailored hierarchical architecture and intrinsic ion release rates to enable advanced functionality.

本研究探索了介孔生物活性玻璃(MBGs),由于其可定制的多孔特性,增强了药物负载能力和局部持续释放的仿生化学,因此它有望成为先进的治疗递送平台。本研究系统地探讨了MBG组成与表面活性剂模板在结构演变、体外生物活性反应、载药效率和释放等方面的复杂关系。采用阳离子和非离子结构导向剂(十六烷基三甲基溴化铵、Pluronic F127和P123)调节SiO2/CaO含量,合成了12个溶胶-凝胶衍生的MBG样品,得到的MBG表面积为60 ~ 695 m2/g。电子显微镜和氮解吸研究证实了12种有序MBG配方的成功合成。通过FTIR光谱和SEM对羟基磷灰石转化动力学进行了评估,结果表明,与使用的表面活性剂无关,70-80% SiO2的配方会加速沉积。然而,模板剂对载药量有影响,在本研究中观察到,模板剂Pluronic P123合成的MBG比其他表面活性剂具有更高的载药量。为了确定药物释放机制,将体外动力学曲线拟合到包括ze-ro在内的各种数学模型中。大多数组合物表现出接近零级的释放特性,表明药物洗脱速率与浓度无关。本研究的这些结果解释了定制层次结构和内在离子释放率之间的关系,以实现高级功能。
{"title":"Impact of composition and surfactant-templating on mesoporous bioactive glasses structural evolution, bioactivity, and drug delivery property.","authors":"Dana Almasri, Yaser Dahman","doi":"10.1177/08853282241312040","DOIUrl":"https://doi.org/10.1177/08853282241312040","url":null,"abstract":"<p><p>This study explores mesoporous bioactive glasses (MBGs) that show promise as advanced therapeutic delivery platforms owing to their tailorable porous properties enabling enhanced drug loading capacity and biomimetic chemistry for localized, sustained release. This work systematically investigates the complex relationship between MBG composition and surfactant templating on structural evolution, <i>in vitro</i> bioactive response, resultant drug loading efficiency and release. A total of 12 samples of sol-gel-derived MBG were synthesized using cationic and non-ionic structure-directing agents (cetyltrimethylammonium bromide, Pluronic F127 and P123) while modulating the SiO<sub>2</sub>/CaO content, generating MBG with surface areas of 60-695 m<sup>2</sup>/g. Electron microscopy and nitrogen desorption studies verified the successful synthesis of the 12 ordered MBG formulations. Assessment of hydroxyapatite conversion kinetics via FTIR spectroscopy and SEM demonstrated accelerated deposition for 70-80% SiO<sub>2</sub> formulations, independent of the surfactant used. However, the templating agent had an impact on drug loading as observed in this study where MBG synthesized by the templating agent Pluronic P123 had higher drug loading compared to the other surfactants. To determine the drug release mechanisms, the in vitro kinetic profiles were fitted to various mathematical models including ze-ro. Most compositions exhibited release properties closest to zero-order, indicating a concentration-independent drug elution rate. These results in this study explain the relationship between tailored hierarchical architecture and intrinsic ion release rates to enable advanced functionality.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"8853282241312040"},"PeriodicalIF":2.3,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142949415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gingival keratinocyte adhesion on atomic layer-deposited hydroxyapatite coated titanium. 羟基磷灰石包覆钛原子层沉积的牙龈角化细胞粘附。
IF 2.3 4区 医学 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2025-01-08 DOI: 10.1177/08853282251313503
Faleh Abushahba, Sini Riivari, Nagat Areid, Elisa Närvä, Elina Kylmäoja, Mikko Ritala, Juha Tuukkanen, Pekka K Vallittu, Timo O Närhi

This study aimed to evaluate the effects of the atomic layer deposited hydroxyapatite (ALD-HA) coating of the titanium (Ti) surface on human gingival keratinocyte (HGK) cell adhesion, spreading, viability, and hemidesmosome (HD) formation. Grade 2 square-shaped Ti substrates were used (n = 62). Half of the substrates were ALD-HA coated, while the other half were used as non-coated controls (NC). The ALD-HA surface was characterized with scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) analysis. The initial cell adhesion and HD formation of HGKs were evaluated after a 24-h cultivation period. The cell proliferation was assessed by cultivating cells for 1, 3, and 7 d. The expression levels of the integrin mediating cell adhesion were detected with the Western Blot method. In addition, cell spreading and expression of the proteins mediating cell adhesion were imaged using a confocal microscope. SEM-EDS analysis demonstrated the formation of HA on the ALD-HA surfaces. The relative cell attachment was significantly higher (p < .05) on the ALD-HA compared to the NC surface after 1 and 3 d of cell culture. No significant difference was found in integrin α6 or β4 expression. The microscope evaluation showed significantly increased cell spreading with peripheral HD expression on ALD-HA compared to the NC surfaces (p = .0001). Moreover, laminin γ2 expression was significantly higher on the ALD-HA than on the NC surfaces (p < .001). Compared to the NC Ti surface, the ALD-HA coating has favorable effects on HGK proliferation, growth, and cell spreading. This indicates that the ALD-HA coating has good potential for improving mucosal attachment on implant surfaces.

本研究旨在评价钛(Ti)表面原子层沉积羟基磷灰石(ALD-HA)涂层对人牙龈角化细胞(HGK)细胞粘附、扩散、活力和半粒体(HD)形成的影响。采用2级方形Ti衬底(n = 62)。一半的底物涂覆了ALD-HA,而另一半用作未涂覆的对照(NC)。利用扫描电镜(SEM)和能谱分析(EDS)对ALD-HA表面进行了表征。培养24 h后,观察HGKs的初始细胞粘附和HD形成情况。分别培养1、3、7 d,观察细胞增殖情况。Western Blot法检测整合素介导细胞粘附的表达水平。此外,用共聚焦显微镜观察细胞扩散和介导细胞粘附的蛋白的表达。SEM-EDS分析表明在ALD-HA表面形成了HA。细胞培养1和3 d后,ALD-HA表面的相对细胞附着量显著高于NC表面(p < 0.05)。整合素α6和β4的表达差异无统计学意义。显微镜评价显示,与NC表面相比,ALD-HA表面细胞扩散明显增加,外周HD表达明显增加(p = 0.0001)。此外,层粘连蛋白γ - 2在ALD-HA表面的表达显著高于NC表面(p < 0.001)。与NC Ti表面相比,ALD-HA涂层对HGK的增殖、生长和细胞扩散具有良好的影响。这表明ALD-HA涂层具有改善种植体表面粘膜附着的良好潜力。
{"title":"Gingival keratinocyte adhesion on atomic layer-deposited hydroxyapatite coated titanium.","authors":"Faleh Abushahba, Sini Riivari, Nagat Areid, Elisa Närvä, Elina Kylmäoja, Mikko Ritala, Juha Tuukkanen, Pekka K Vallittu, Timo O Närhi","doi":"10.1177/08853282251313503","DOIUrl":"https://doi.org/10.1177/08853282251313503","url":null,"abstract":"<p><p><b>T</b>his study aimed to evaluate the effects of the atomic layer deposited hydroxyapatite (ALD-HA) coating of the titanium (Ti) surface on human gingival keratinocyte (HGK) cell adhesion, spreading, viability, and hemidesmosome (HD) formation. Grade 2 square-shaped Ti substrates were used (<i>n</i> = 62). Half of the substrates were ALD-HA coated, while the other half were used as non-coated controls (NC). The ALD-HA surface was characterized with scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) analysis. The initial cell adhesion and HD formation of HGKs were evaluated after a 24-h cultivation period. The cell proliferation was assessed by cultivating cells for 1, 3, and 7 d. The expression levels of the integrin mediating cell adhesion were detected with the Western Blot method. In addition, cell spreading and expression of the proteins mediating cell adhesion were imaged using a confocal microscope. SEM-EDS analysis demonstrated the formation of HA on the ALD-HA surfaces. The relative cell attachment was significantly higher (<i>p</i> < .05) on the ALD-HA compared to the NC surface after 1 and 3 d of cell culture. No significant difference was found in integrin α6 or β4 expression. The microscope evaluation showed significantly increased cell spreading with peripheral HD expression on ALD-HA compared to the NC surfaces (<i>p</i> = .0001). Moreover, laminin γ2 expression was significantly higher on the ALD-HA than on the NC surfaces (<i>p</i> < .001). Compared to the NC Ti surface, the ALD-HA coating has favorable effects on HGK proliferation, growth, and cell spreading. This indicates that the ALD-HA coating has good potential for improving mucosal attachment on implant surfaces.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"8853282251313503"},"PeriodicalIF":2.3,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142949414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of polyvinylpyrrolidone-catechol-derived chitosan nanoconjugates allowed for kidney-targeted treatment of cisplatin-induced acute kidney injury and nursing care management. 聚乙烯吡咯烷酮-儿茶酚衍生壳聚糖纳米偶联物治疗顺铂急性肾损伤及护理管理的研究。
IF 2.3 4区 医学 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2025-01-07 DOI: 10.1177/08853282241304396
Guixian Chen

Acute kidney injury (AKI) resulting from cisplatin (Cs) chemotherapy presents a significant challenge in clinical management. The study aimed to fabricate a novel compound Polyvinylpyrrolidone-catechol-derived chitosan nanoconjugates (PCChi-NC) for targeting Cs-induced AKI. Characterization studies utilizing UV-visible spectrophotometry, FT-IR, XRD, and TEM revealed a spherical morphology with diameters ranging from 20 to 60 nm. In vitro assessments utilizing HEK 293 cell lines demonstrated the biocompatibility of PCChi-NC without eliciting toxic effects. Furthermore, PCChi-NC exhibited a notable reduction in Cs-induced cell death in kidney cells, as evidenced by biomarker analysis. Anti-inflammatory analysis of mouse kidney homogenates revealed a decrease in TNF-α and IL-1β levels, indicative of the therapeutic efficacy of PCChi-NC in mitigating Cs-induced kidney inflammation. Moreover, In vivo, experimental analysis was evidenced by stable body weight and histopathological changes in mice. Our findings highlight the potential of PCChi-NC as a promising candidate for targeted therapy in Cs-induced AKI, owing to its unique renal targeting capacity.

顺铂(Cs)化疗引起的急性肾损伤(AKI)在临床管理中提出了重大挑战。本研究旨在制备一种新型复合聚乙烯吡咯烷酮-儿茶酚衍生壳聚糖纳米偶联物(PCChi-NC),用于靶向cs诱导的AKI。利用紫外可见分光光度法,FT-IR, XRD和TEM进行表征,发现其直径为20 ~ 60 nm的球形形貌。利用HEK 293细胞系进行的体外评估表明PCChi-NC具有生物相容性,且没有引起毒性作用。此外,生物标志物分析表明,PCChi-NC显著减少了cs诱导的肾细胞死亡。小鼠肾匀浆的抗炎分析显示,TNF-α和IL-1β水平降低,表明PCChi-NC减轻cs诱导的肾脏炎症的治疗作用。此外,在体内,实验分析证实了小鼠的体重稳定和组织病理学变化。我们的研究结果强调了PCChi-NC作为cs诱导AKI靶向治疗的潜在候选药物的潜力,因为它具有独特的肾脏靶向能力。
{"title":"Investigation of polyvinylpyrrolidone-catechol-derived chitosan nanoconjugates allowed for kidney-targeted treatment of cisplatin-induced acute kidney injury and nursing care management.","authors":"Guixian Chen","doi":"10.1177/08853282241304396","DOIUrl":"https://doi.org/10.1177/08853282241304396","url":null,"abstract":"<p><p>Acute kidney injury (AKI) resulting from cisplatin (Cs) chemotherapy presents a significant challenge in clinical management. The study aimed to fabricate a novel compound Polyvinylpyrrolidone-catechol-derived chitosan nanoconjugates (PCChi-NC) for targeting Cs-induced AKI. Characterization studies utilizing UV-visible spectrophotometry, FT-IR, XRD, and TEM revealed a spherical morphology with diameters ranging from 20 to 60 nm. In vitro assessments utilizing HEK 293 cell lines demonstrated the biocompatibility of PCChi-NC without eliciting toxic effects. Furthermore, PCChi-NC exhibited a notable reduction in Cs-induced cell death in kidney cells, as evidenced by biomarker analysis. Anti-inflammatory analysis of mouse kidney homogenates revealed a decrease in TNF-α and IL-1β levels, indicative of the therapeutic efficacy of PCChi-NC in mitigating Cs-induced kidney inflammation. Moreover, In vivo, experimental analysis was evidenced by stable body weight and histopathological changes in mice. Our findings highlight the potential of PCChi-NC as a promising candidate for targeted therapy in Cs-induced AKI, owing to its unique renal targeting capacity.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"8853282241304396"},"PeriodicalIF":2.3,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142947926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanobiological enhancement of electrospun PCL/nHA membranes for guided tissue regeneration applications. 静电纺丝PCL/nHA膜在引导组织再生应用中的机械生物学增强。
IF 2.3 4区 医学 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2025-01-05 DOI: 10.1177/08853282241312285
Niki Dadgari, Hamidreza Fotoukian, Masoumeh Haghbin Nazarpak, Mehran Solati-Hashjin

This study aims to investigate the effects of adding nano-hydroxyapatite (nHA) to electrospun polycaprolactone (PCL) membranes for use in dental root regeneration. Porous membranes containing varying amounts of nHA (0, 1, 1.5, and 2.5 wt%) were fabricated using the electrospinning method. The physicochemical, mechanical, and biological properties of the membranes were evaluated. The synthesized nHA particles had an average size of 52 nm. Electrospun membranes exhibited uniform fibrous morphology with porosities ranging from 56% to 86%. Cyclic thermal stress (5°C-50°C) improved the mechanical properties of the composite membranes, resulting in a decrease in ultimate tensile strength (UTS) for pristine PCL from 3 ± 0.12 MPa to 1.7 ± 0.11 MPa, while the UTS for PCL membranes containing 1.5% nHA increased from 3.3 ± 0.30 MPa to 4.18 ± 0.28 MPa. In vitro bioactivity in simulated body fluid (SBF) showed enhanced apatite formation, particularly after 21 and 28 days. Cytotoxicity assays with MG-63 osteoblast-like cells demonstrated good biological performance. The incorporation of nHA not only improved the mechanical properties but also enhanced the bioactivity and cytocompatibility of the electrospun PCL membranes, making them promising candidates for guided tissue regeneration (GTR) applications.

本研究旨在探讨纳米羟基磷灰石(nHA)在静电纺聚己内酯(PCL)膜中的应用效果。采用静电纺丝法制备了含有不同数量nHA(0、1、1.5和2.5 wt%)的多孔膜。对膜的物理化学、力学和生物学性能进行了评价。合成的nHA颗粒平均粒径为52 nm。静电纺丝膜具有均匀的纤维形态,孔隙率为56% ~ 86%。循环热应力(5°C-50°C)改善了复合膜的力学性能,使原始PCL的极限拉伸强度(UTS)从3±0.12 MPa降低到1.7±0.11 MPa,而含1.5% nHA的PCL膜的UTS从3.3±0.30 MPa提高到4.18±0.28 MPa。体外生物活性在模拟体液(SBF)中显示磷灰石形成增强,特别是在21和28天后。MG-63成骨样细胞的细胞毒性试验显示出良好的生物学性能。nHA的掺入不仅改善了静电纺PCL膜的力学性能,而且增强了其生物活性和细胞相容性,使其成为引导组织再生(GTR)应用的有希望的候选者。
{"title":"Mechanobiological enhancement of electrospun PCL/nHA membranes for guided tissue regeneration applications.","authors":"Niki Dadgari, Hamidreza Fotoukian, Masoumeh Haghbin Nazarpak, Mehran Solati-Hashjin","doi":"10.1177/08853282241312285","DOIUrl":"https://doi.org/10.1177/08853282241312285","url":null,"abstract":"<p><p>This study aims to investigate the effects of adding nano-hydroxyapatite (nHA) to electrospun polycaprolactone (PCL) membranes for use in dental root regeneration. Porous membranes containing varying amounts of nHA (0, 1, 1.5, and 2.5 wt%) were fabricated using the electrospinning method. The physicochemical, mechanical, and biological properties of the membranes were evaluated. The synthesized nHA particles had an average size of 52 nm. Electrospun membranes exhibited uniform fibrous morphology with porosities ranging from 56% to 86%. Cyclic thermal stress (5°C-50°C) improved the mechanical properties of the composite membranes, resulting in a decrease in ultimate tensile strength (UTS) for pristine PCL from 3 ± 0.12 MPa to 1.7 ± 0.11 MPa, while the UTS for PCL membranes containing 1.5% nHA increased from 3.3 ± 0.30 MPa to 4.18 ± 0.28 MPa. <i>In vitro</i> bioactivity in simulated body fluid (SBF) showed enhanced apatite formation, particularly after 21 and 28 days. Cytotoxicity assays with MG-63 osteoblast-like cells demonstrated good biological performance. The incorporation of nHA not only improved the mechanical properties but also enhanced the bioactivity and cytocompatibility of the electrospun PCL membranes, making them promising candidates for guided tissue regeneration (GTR) applications.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"8853282241312285"},"PeriodicalIF":2.3,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142931669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing alginate dialdehyde-gelatin (ADA-GEL) based hydrogels for biofabrication by addition of phytotherapeutics and mesoporous bioactive glass nanoparticles (MBGNs). 通过添加植物治疗剂和介孔生物活性玻璃纳米颗粒(MBGNs),增强基于海藻酸二醛明胶(ADA-GEL)的水凝胶,用于生物制造。
IF 2.3 4区 医学 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2025-01-01 Epub Date: 2024-09-21 DOI: 10.1177/08853282241280768
Faina Bider, Chiara Gunnella, Jana T Reh, Corina-Elena Clejanu, Sonja Kuth, Ana M Beltrán, Aldo R Boccaccini

This study explores the 3D printing of alginate dialdehyde-gelatin (ADA-GEL) inks incorporating phytotherapeutic agents, such as ferulic acid (FA), and silicate mesoporous bioactive glass nanoparticles (MBGNs) at two different concentrations. 3D scaffolds with bioactive properties suitable for bone tissue engineering (TE) were obtained. The degradation and swelling behaviour of films and 3D printed scaffolds indicated an accelerated trend with increasing MBGN content, while FA appeared to stabilize the samples. Determination of the degree of crosslinking validated the increased stability of hydrogels due to the addition of FA and 0.1% (w/v) MBGNs. The incorporation of MBGNs not only improved the effective moduli and conferred bioactive properties through the formation of hydroxyapatite (HAp) on the surface of ADA-GEL-based samples but also enhanced VEGF-A expression of MC3T3-E1 cells. The beneficial impact of FA and low concentrations of MBGNs in ADA-GEL-based inks for 3D (bio)printing applications was corroborated through various printing experiments, resulting in higher printing resolution, as also confirmed by rheological measurements. Cytocompatibility investigations revealed enhanced MC3T3-E1 cell activity and viability. Furthermore, the presence of mineral phases, as confirmed by an in vitro biomineralization assay, and increased ALP activity after 21 days, attributed to the addition of FA and MBGNs, were demonstrated. Considering the acquired structural and biological properties, along with efficient drug delivery capability, enhanced biological activity, and improved 3D printability, the newly developed inks exhibit promising potential for biofabrication and bone TE.

本研究探索了藻酸盐二醛明胶(ADA-GEL)油墨的三维打印技术,其中掺入了两种不同浓度的植物治疗剂,如阿魏酸(FA)和硅酸盐介孔生物活性玻璃纳米颗粒(MBGNs)。获得了具有适合骨组织工程(TE)的生物活性特性的三维支架。薄膜和三维打印支架的降解和膨胀行为表明,随着 MBGN 含量的增加,降解和膨胀行为呈加速趋势,而 FA 似乎能稳定样品。交联度的测定验证了添加 FA 和 0.1%(w/v)MBGN 后水凝胶稳定性的提高。MBGNs 的加入不仅提高了有效模量,并通过在 ADA-GEL 样品表面形成羟基磷灰石 (HAp) 赋予其生物活性特性,还增强了 MC3T3-E1 细胞的血管内皮生长因子-A 表达。通过各种打印实验,证实了基于 ADA-GEL 的墨水中 FA 和低浓度 MBGNs 对三维(生物)打印应用的有利影响,从而提高了打印分辨率,流变学测量也证实了这一点。细胞相容性研究表明,MC3T3-E1 细胞的活性和活力得到了增强。此外,体外生物矿化试验也证实了矿物相的存在,21 天后 ALP 活性也有所提高,这归因于添加了 FA 和 MBGN。考虑到所获得的结构和生物特性,以及高效的药物输送能力、更强的生物活性和更好的三维打印性,新开发的油墨在生物制造和骨 TE 方面展现出了巨大的潜力。
{"title":"Enhancing alginate dialdehyde-gelatin (ADA-GEL) based hydrogels for biofabrication by addition of phytotherapeutics and mesoporous bioactive glass nanoparticles (MBGNs).","authors":"Faina Bider, Chiara Gunnella, Jana T Reh, Corina-Elena Clejanu, Sonja Kuth, Ana M Beltrán, Aldo R Boccaccini","doi":"10.1177/08853282241280768","DOIUrl":"10.1177/08853282241280768","url":null,"abstract":"<p><p>This study explores the 3D printing of alginate dialdehyde-gelatin (ADA-GEL) inks incorporating phytotherapeutic agents, such as ferulic acid (FA), and silicate mesoporous bioactive glass nanoparticles (MBGNs) at two different concentrations. 3D scaffolds with bioactive properties suitable for bone tissue engineering (TE) were obtained. The degradation and swelling behaviour of films and 3D printed scaffolds indicated an accelerated trend with increasing MBGN content, while FA appeared to stabilize the samples. Determination of the degree of crosslinking validated the increased stability of hydrogels due to the addition of FA and 0.1% (w/v) MBGNs. The incorporation of MBGNs not only improved the effective moduli and conferred bioactive properties through the formation of hydroxyapatite (HAp) on the surface of ADA-GEL-based samples but also enhanced VEGF-A expression of MC3T3-E1 cells. The beneficial impact of FA and low concentrations of MBGNs in ADA-GEL-based inks for 3D (bio)printing applications was corroborated through various printing experiments, resulting in higher printing resolution, as also confirmed by rheological measurements. Cytocompatibility investigations revealed enhanced MC3T3-E1 cell activity and viability. Furthermore, the presence of mineral phases, as confirmed by an in vitro biomineralization assay, and increased ALP activity after 21 days, attributed to the addition of FA and MBGNs, were demonstrated. Considering the acquired structural and biological properties, along with efficient drug delivery capability, enhanced biological activity, and improved 3D printability, the newly developed inks exhibit promising potential for biofabrication and bone TE.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"524-556"},"PeriodicalIF":2.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11707976/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142287980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cu/Gd co-doped hydroxyapatite/poly lactic-co-glycolic acid composites enhance MRI imaging and bone defect regeneration. 铜/钆共掺羟基磷灰石/聚乳酸-聚乙醇酸复合材料可增强核磁共振成像和骨缺损再生。
IF 2.3 4区 医学 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2025-01-01 Epub Date: 2024-09-08 DOI: 10.1177/08853282241276064
Wei Lu, Xin Xia, Yihang Ma, Hongtao He, Don O Kikkawa, Lu Zhang, Bo Zhang, Xiangji Liu

Background: The hydroxyapatite (HA)/poly(lactide-co-glycolide) acid (PLGA) composite material is a widely used orthopedic implant due to its excellent biocompatibility and plasticity. Recent advancements in cation doping have expanded its potential biological applications. However, conventional HA/PLGA composites are not visible under X-rays post-implantation and have limited osteogenic induction capabilities. Copper (Cu) is known to regulate osteoblast proliferation and differentiation, while gadolinium (Gd) can significantly enhance the magnetic resonance imaging (MRI) capabilities of materials. Methods: This study aimed to investigate whether incorporating Cu and Gd into an HA/PLGA composite could enhance the osteogenic properties, in vivo bone defect repair, and MRI characteristics. We prepared a Cu/Gd@HA/PLGA composite and assessed its performance. Results: Material characterization confirmed that Cu/Gd@HA retained the morphology and crystal structure of HA. The Cu/Gd@HA/PLGA composite exhibited excellent nuclear magnetic imaging capabilities, porosity, and hydrophilicity, which are conducive to cell adhesion and implant detection. In vitro experiments demonstrated that the Cu/Gd@HA/PLGA composite enhanced the proliferation, differentiation, and adhesion of MC3T3-E1 cells, and upregulated COL-1 and BMP-2 expression at both gene and protein levels. In vivo studies showed that the Cu/Gd@HA/PLGA composite maintained strong T1-weighted MRI signals and significantly improved the bone defect healing rate in rats. Conclusion: These findings indicate that the Cu/Gd@HA/PLGA composites significantly enhance T1-weighted MRI capabilities, promote osteoblast proliferation and differentiation in vitro, and accelerate bone defect healing in vivo.

背景:羟基磷灰石(HA)/聚乳酸-聚乙二醇酸(PLGA)复合材料具有良好的生物相容性和可塑性,是一种广泛使用的骨科植入物。最近在阳离子掺杂方面取得的进展扩大了其潜在的生物应用领域。然而,传统的 HA/PLGA 复合材料在植入后的 X 射线下不可见,而且成骨诱导能力有限。众所周知,铜(Cu)能调节成骨细胞的增殖和分化,而钆(Gd)能显著增强材料的磁共振成像(MRI)能力。方法:本研究旨在探讨在 HA/PLGA 复合材料中加入 Cu 和 Gd 能否增强其成骨性、体内骨缺损修复和磁共振成像特性。我们制备了一种 Cu/Gd@HA/PLGA 复合材料,并对其性能进行了评估。结果:材料表征证实 Cu/Gd@HA 保留了 HA 的形态和晶体结构。Cu/Gd@HA/PLGA 复合材料具有优异的核磁成像能力、多孔性和亲水性,有利于细胞粘附和植入物检测。体外实验表明,Cu/Gd@HA/PLGA 复合材料增强了 MC3T3-E1 细胞的增殖、分化和粘附能力,并在基因和蛋白水平上上调了 COL-1 和 BMP-2 的表达。体内研究表明,Cu/Gd@HA/PLGA 复合材料能保持较强的 T1 加权磁共振成像信号,并能显著提高大鼠骨缺损的愈合率。结论:这些研究结果表明,Cu/Gd@HA/PLGA 复合材料可显著增强 T1 加权磁共振成像能力,在体外促进成骨细胞增殖和分化,在体内加速骨缺损愈合。
{"title":"Cu/Gd co-doped hydroxyapatite/poly lactic-co-glycolic acid composites enhance MRI imaging and bone defect regeneration.","authors":"Wei Lu, Xin Xia, Yihang Ma, Hongtao He, Don O Kikkawa, Lu Zhang, Bo Zhang, Xiangji Liu","doi":"10.1177/08853282241276064","DOIUrl":"10.1177/08853282241276064","url":null,"abstract":"<p><p><b>Background:</b> The hydroxyapatite (HA)/poly(lactide-co-glycolide) acid (PLGA) composite material is a widely used orthopedic implant due to its excellent biocompatibility and plasticity. Recent advancements in cation doping have expanded its potential biological applications. However, conventional HA/PLGA composites are not visible under X-rays post-implantation and have limited osteogenic induction capabilities. Copper (Cu) is known to regulate osteoblast proliferation and differentiation, while gadolinium (Gd) can significantly enhance the magnetic resonance imaging (MRI) capabilities of materials. <b>Methods:</b> This study aimed to investigate whether incorporating Cu and Gd into an HA/PLGA composite could enhance the osteogenic properties, in vivo bone defect repair, and MRI characteristics. We prepared a Cu/Gd@HA/PLGA composite and assessed its performance. <b>Results:</b> Material characterization confirmed that Cu/Gd@HA retained the morphology and crystal structure of HA. The Cu/Gd@HA/PLGA composite exhibited excellent nuclear magnetic imaging capabilities, porosity, and hydrophilicity, which are conducive to cell adhesion and implant detection. In vitro experiments demonstrated that the Cu/Gd@HA/PLGA composite enhanced the proliferation, differentiation, and adhesion of MC3T3-E1 cells, and upregulated COL-1 and BMP-2 expression at both gene and protein levels. In vivo studies showed that the Cu/Gd@HA/PLGA composite maintained strong T1-weighted MRI signals and significantly improved the bone defect healing rate in rats. <b>Conclusion:</b> These findings indicate that the Cu/Gd@HA/PLGA composites significantly enhance T1-weighted MRI capabilities, promote osteoblast proliferation and differentiation in vitro, and accelerate bone defect healing in vivo.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"632-647"},"PeriodicalIF":2.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142154081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Application of self-assembled antibacterial nanofiber loaded oriented artificial skin in infected diabetic-related wound regeneration. 自组装抗菌纳米纤维负载定向人造皮肤在糖尿病相关感染伤口再生中的应用。
IF 2.3 4区 医学 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2025-01-01 Epub Date: 2024-09-19 DOI: 10.1177/08853282241267253
Jie Yang, Shengyun Li

Diabetic patients develop wounds that exhibit delayed healing, prolonged inflammatory responses, and slower epithelialization kinetics compared to non-diabetic patients. Diabetic foot ulcers(DFUs) affect approximately 18.6 million people worldwide. The presence of a high glucose microenvironment in DFUs results in the significant accumulation of bacterial infection and advanced glycation end products (AGEs). To solve this, a self-assemble antibacterial nanofiber(ANF) loaded oriential artificial skin (ANF@OAS) was introduced in this research, which is consisted of L/D-phenylalanine derivatives coupled the natural antimicrobial peptides. The ANF@OAS can effectively reduce AGEs production and suppress multiple resistant bacteria. Additionally, the ANF@OAS can suppress infection and stimulate wound healing in infected diabetic mice.

与非糖尿病患者相比,糖尿病患者的伤口愈合延迟、炎症反应持续时间长、上皮化速度慢。全球约有 1,860 万人患有糖尿病足溃疡。为了解决这一问题,本研究推出了一种自组装抗菌纳米纤维(ANF)负载的人工皮肤(ANF@OAS)。ANF@OAS 能有效减少 AGEs 的产生,抑制多种耐药菌。此外,ANF@OAS 还能抑制感染,刺激受感染的糖尿病小鼠伤口愈合。
{"title":"Application of self-assembled antibacterial nanofiber loaded oriented artificial skin in infected diabetic-related wound regeneration.","authors":"Jie Yang, Shengyun Li","doi":"10.1177/08853282241267253","DOIUrl":"10.1177/08853282241267253","url":null,"abstract":"<p><p>Diabetic patients develop wounds that exhibit delayed healing, prolonged inflammatory responses, and slower epithelialization kinetics compared to non-diabetic patients. Diabetic foot ulcers(DFUs) affect approximately 18.6 million people worldwide. The presence of a high glucose microenvironment in DFUs results in the significant accumulation of bacterial infection and advanced glycation end products (AGEs). To solve this, a self-assemble antibacterial nanofiber(ANF) loaded oriential artificial skin (ANF@OAS) was introduced in this research, which is consisted of L/D-phenylalanine derivatives coupled the natural antimicrobial peptides. The ANF@OAS can effectively reduce AGEs production and suppress multiple resistant bacteria. Additionally, the ANF@OAS can suppress infection and stimulate wound healing in infected diabetic mice.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"661-668"},"PeriodicalIF":2.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142287978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
WITHDRAWAL - Administrative duplicate publication: Application of self-assembled antibacterial nanofiber loaded oriented artificial skin in infected diabetic-related wound regeneration. 自组装抗菌纳米纤维定向人造皮肤在感染糖尿病相关伤口再生中的应用。
IF 2.3 4区 医学 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2025-01-01 DOI: 10.1177/08853282241305032
{"title":"WITHDRAWAL - Administrative duplicate publication: Application of self-assembled antibacterial nanofiber loaded oriented artificial skin in infected diabetic-related wound regeneration.","authors":"","doi":"10.1177/08853282241305032","DOIUrl":"https://doi.org/10.1177/08853282241305032","url":null,"abstract":"","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":"39 6","pages":"NP1"},"PeriodicalIF":2.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142948419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Biomaterials Applications
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1