Lixing Zhang, Kaijun Shen, Yiying Yan, Kewei Sun, Maxim F Gelin, Yang Zhao
{"title":"Hamiltonian non-Hermicity: Accurate dynamics with the multiple Davydov D2Ansätze.","authors":"Lixing Zhang, Kaijun Shen, Yiying Yan, Kewei Sun, Maxim F Gelin, Yang Zhao","doi":"10.1063/5.0243861","DOIUrl":null,"url":null,"abstract":"<p><p>We examine the applicability of the numerically accurate method of time dependent variation with multiple Davydov Ansätze (mDA) to non-Hermitian systems. As illustrative examples, three systems of interest have been studied, a non-Hermitian system of dissipative Landau-Zener transitions, a non-Hermitian multimode Jaynes-Cummings model, and a dissipative Holstein-Tavis-Cummings model, all of which are shown to be effectively described by the mDA method. Our findings highlight the versatility of the mDA as a powerful numerical tool for investigating complex many-body non-Hermitian systems, which can be extended to explore diverse phenomena such as skin effects, excited-state dynamics, and spectral topology in the non-Hermitian field.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"161 19","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0243861","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We examine the applicability of the numerically accurate method of time dependent variation with multiple Davydov Ansätze (mDA) to non-Hermitian systems. As illustrative examples, three systems of interest have been studied, a non-Hermitian system of dissipative Landau-Zener transitions, a non-Hermitian multimode Jaynes-Cummings model, and a dissipative Holstein-Tavis-Cummings model, all of which are shown to be effectively described by the mDA method. Our findings highlight the versatility of the mDA as a powerful numerical tool for investigating complex many-body non-Hermitian systems, which can be extended to explore diverse phenomena such as skin effects, excited-state dynamics, and spectral topology in the non-Hermitian field.
期刊介绍:
The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance.
Topical coverage includes:
Theoretical Methods and Algorithms
Advanced Experimental Techniques
Atoms, Molecules, and Clusters
Liquids, Glasses, and Crystals
Surfaces, Interfaces, and Materials
Polymers and Soft Matter
Biological Molecules and Networks.