Improved Three-Dimensional Reconstructions in Electron Ptychography through Defocus Series Measurements.

IF 2.9 4区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Microscopy and Microanalysis Pub Date : 2025-02-17 DOI:10.1093/mam/ozae110
Marcel Schloz, Thomas C Pekin, Hamish G Brown, Dana O Byrne, Bryan D Esser, Emmanuel Terzoudis-Lumsden, Takashi Taniguchi, Kenji Watanabe, Scott D Findlay, Benedikt Haas, Jim Ciston, Christoph T Koch
{"title":"Improved Three-Dimensional Reconstructions in Electron Ptychography through Defocus Series Measurements.","authors":"Marcel Schloz, Thomas C Pekin, Hamish G Brown, Dana O Byrne, Bryan D Esser, Emmanuel Terzoudis-Lumsden, Takashi Taniguchi, Kenji Watanabe, Scott D Findlay, Benedikt Haas, Jim Ciston, Christoph T Koch","doi":"10.1093/mam/ozae110","DOIUrl":null,"url":null,"abstract":"<p><p>A detailed analysis of ptychography for three-dimensional (3D) phase reconstructions of thick specimens is performed. We introduce multi-focus ptychography, which incorporates a 4D-STEM defocus series to enhance the quality of 3D reconstructions along the beam direction through a higher overdetermination ratio. This method is compared with established multi-slice ptychography techniques, such as conventional ptychography, regularized ptychography, and multi-mode ptychography. Additionally, we contrast multi-focus ptychography with an alternative method that uses virtual optical sectioning through a reconstructed scattering matrix (S-matrix), which offers more precise 3D structure information compared to conventional ptychography. Our findings from multiple 3D reconstructions based on simulated and experimental data demonstrate that multi-focus ptychography surpasses other techniques, particularly in accurately reconstructing the surfaces and interface regions of thick specimens.</p>","PeriodicalId":18625,"journal":{"name":"Microscopy and Microanalysis","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microscopy and Microanalysis","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/mam/ozae110","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A detailed analysis of ptychography for three-dimensional (3D) phase reconstructions of thick specimens is performed. We introduce multi-focus ptychography, which incorporates a 4D-STEM defocus series to enhance the quality of 3D reconstructions along the beam direction through a higher overdetermination ratio. This method is compared with established multi-slice ptychography techniques, such as conventional ptychography, regularized ptychography, and multi-mode ptychography. Additionally, we contrast multi-focus ptychography with an alternative method that uses virtual optical sectioning through a reconstructed scattering matrix (S-matrix), which offers more precise 3D structure information compared to conventional ptychography. Our findings from multiple 3D reconstructions based on simulated and experimental data demonstrate that multi-focus ptychography surpasses other techniques, particularly in accurately reconstructing the surfaces and interface regions of thick specimens.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过离焦系列测量改进电子乳排造影中的三维重建
我们详细分析了厚标本三维(3D)相位重建的分层摄影技术。我们引入了多焦点平片成像技术,该技术结合了 4D-STEM 去焦系列,通过更高的过确定比来提高沿光束方向的三维重建质量。我们将这种方法与已有的多切片层析技术(如传统层析技术、正则化层析技术和多模式层析技术)进行了比较。此外,我们还将多焦点断层扫描与另一种通过重建散射矩阵(S-matrix)进行虚拟光学切片的方法进行了对比,后者能提供比传统断层扫描更精确的三维结构信息。我们基于模拟和实验数据进行的多次三维重建结果表明,多焦点分层摄影超越了其他技术,尤其是在精确重建厚试样的表面和界面区域方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Microscopy and Microanalysis
Microscopy and Microanalysis 工程技术-材料科学:综合
CiteScore
1.10
自引率
10.70%
发文量
1391
审稿时长
6 months
期刊介绍: Microscopy and Microanalysis publishes original research papers in the fields of microscopy, imaging, and compositional analysis. This distinguished international forum is intended for microscopists in both biology and materials science. The journal provides significant articles that describe new and existing techniques and instrumentation, as well as the applications of these to the imaging and analysis of microstructure. Microscopy and Microanalysis also includes review articles, letters to the editor, and book reviews.
期刊最新文献
How Cryo-EM Revolutionized the Field of Bioenergetics. Large-Angle Rocking Beam Electron Diffraction of Large Unit Cell Crystals Using Direct Electron Detector. Obtaining 3D Atomic Reconstructions from Electron Microscopy Images Using a Bayesian Genetic Algorithm: Possibilities, Insights, and Limitations. Control of Grain Boundary Formation in Atomically Resolved Nanocrystalline Carbon Monolayers: Dependence on Electron Energy. Cytological Effects of Cadmium Poisoning and the Protective Effect of Quercetin: A Mechanism Exploration based on the Testicular Lamina Propria.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1