Improving Survey Inference Using Administrative Records Without Releasing Individual-Level Continuous Data.

IF 1.8 4区 医学 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY Statistics in Medicine Pub Date : 2024-11-18 DOI:10.1002/sim.10270
Sharifa Z Williams, Jungang Zou, Yutao Liu, Yajuan Si, Sandro Galea, Qixuan Chen
{"title":"Improving Survey Inference Using Administrative Records Without Releasing Individual-Level Continuous Data.","authors":"Sharifa Z Williams, Jungang Zou, Yutao Liu, Yajuan Si, Sandro Galea, Qixuan Chen","doi":"10.1002/sim.10270","DOIUrl":null,"url":null,"abstract":"<p><p>Probability surveys are challenged by increasing nonresponse rates, resulting in biased statistical inference. Auxiliary information about populations can be used to reduce bias in estimation. Often continuous auxiliary variables in administrative records are first discretized before releasing to the public to avoid confidentiality breaches. This may weaken the utility of the administrative records in improving survey estimates, particularly when there is a strong relationship between continuous auxiliary information and the survey outcome. In this paper, we propose a two-step strategy, where the confidential continuous auxiliary data in the population are first utilized to estimate the response propensity score of the survey sample by statistical agencies, which is then included in a modified population data for data users. In the second step, data users who do not have access to confidential continuous auxiliary data conduct predictive survey inference by including discretized continuous variables and the propensity score as predictors using splines in a Bayesian model. We show by simulation that the proposed method performs well, yielding more efficient estimates of population means with 95% credible intervals providing better coverage than alternative approaches. We illustrate the proposed method using the Ohio Army National Guard Mental Health Initiative (OHARNG-MHI). The methods developed in this work are readily available in the R package AuxSurvey.</p>","PeriodicalId":21879,"journal":{"name":"Statistics in Medicine","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/sim.10270","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Probability surveys are challenged by increasing nonresponse rates, resulting in biased statistical inference. Auxiliary information about populations can be used to reduce bias in estimation. Often continuous auxiliary variables in administrative records are first discretized before releasing to the public to avoid confidentiality breaches. This may weaken the utility of the administrative records in improving survey estimates, particularly when there is a strong relationship between continuous auxiliary information and the survey outcome. In this paper, we propose a two-step strategy, where the confidential continuous auxiliary data in the population are first utilized to estimate the response propensity score of the survey sample by statistical agencies, which is then included in a modified population data for data users. In the second step, data users who do not have access to confidential continuous auxiliary data conduct predictive survey inference by including discretized continuous variables and the propensity score as predictors using splines in a Bayesian model. We show by simulation that the proposed method performs well, yielding more efficient estimates of population means with 95% credible intervals providing better coverage than alternative approaches. We illustrate the proposed method using the Ohio Army National Guard Mental Health Initiative (OHARNG-MHI). The methods developed in this work are readily available in the R package AuxSurvey.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在不公布个人层面连续数据的情况下,利用行政记录改进调查推断。
概率调查面临的挑战是无应答率越来越高,导致统计推断产生偏差。有关人口的辅助信息可用于减少估计中的偏差。通常情况下,行政记录中的连续辅助变量在向公众公布前会先被离散化,以避免泄密。这可能会削弱行政记录在改进调查估计方面的作用,尤其是当连续辅助信息与调查结果之间存在密切关系时。在本文中,我们提出了一种分两步走的策略,即首先由统计机构利用人口中的保密连续辅助数据估算调查样本的响应倾向得分,然后将其纳入修改后的人口数据中,供数据用户使用。在第二步中,无法获取保密连续辅助数据的数据用户将离散连续变量和倾向得分作为预测因子,利用贝叶斯模型中的样条进行预测性调查推断。我们通过仿真证明,与其他方法相比,所提出的方法性能良好,能更有效地估计人口均值,95% 可信区间的覆盖率更高。我们使用俄亥俄州陆军国民警卫队心理健康计划(OHARNG-MHI)对所提出的方法进行了说明。本研究中开发的方法可在 R 软件包 AuxSurvey 中找到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Statistics in Medicine
Statistics in Medicine 医学-公共卫生、环境卫生与职业卫生
CiteScore
3.40
自引率
10.00%
发文量
334
审稿时长
2-4 weeks
期刊介绍: The journal aims to influence practice in medicine and its associated sciences through the publication of papers on statistical and other quantitative methods. Papers will explain new methods and demonstrate their application, preferably through a substantive, real, motivating example or a comprehensive evaluation based on an illustrative example. Alternatively, papers will report on case-studies where creative use or technical generalizations of established methodology is directed towards a substantive application. Reviews of, and tutorials on, general topics relevant to the application of statistics to medicine will also be published. The main criteria for publication are appropriateness of the statistical methods to a particular medical problem and clarity of exposition. Papers with primarily mathematical content will be excluded. The journal aims to enhance communication between statisticians, clinicians and medical researchers.
期刊最新文献
A Novel Bayesian Spatio-Temporal Surveillance Metric to Predict Emerging Infectious Disease Areas of High Disease Risk. Does Remdesivir Lower COVID-19 Mortality? A Subgroup Analysis of Hospitalized Adults Receiving Supplemental Oxygen. Modeling Chronic Disease Mortality by Methods From Accelerated Life Testing. A Nonparametric Global Win Probability Approach to the Analysis and Sizing of Randomized Controlled Trials With Multiple Endpoints of Different Scales and Missing Data: Beyond O'Brien-Wei-Lachin. Causal Inference for Continuous Multiple Time Point Interventions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1