Implementation of a rule-based algorithm to find patients eligible for cancer clinical trials.

IF 2.5 Q2 HEALTH CARE SCIENCES & SERVICES JAMIA Open Pub Date : 2024-11-18 eCollection Date: 2024-12-01 DOI:10.1093/jamiaopen/ooae131
Nina A Bickell, Benjamin May, Ihor Havrylchuk, Jimmy John, Sylvia Lin, Ariana Tao, Radhi Yagnik, Nicholas P Tatonetti
{"title":"Implementation of a rule-based algorithm to find patients eligible for cancer clinical trials.","authors":"Nina A Bickell, Benjamin May, Ihor Havrylchuk, Jimmy John, Sylvia Lin, Ariana Tao, Radhi Yagnik, Nicholas P Tatonetti","doi":"10.1093/jamiaopen/ooae131","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To explore implementing regular expressions (RegEx) to streamline patient identification and classification for matching to clinical trials.</p><p><strong>Materials and methods: </strong>To prepare approaches needed to match patients to relevant cancer clinical trials, we combined NCI's Clinical Trials Search API to extract high-level eligibility criteria, including cancer type, stage, receptor/biomarker status, with similar data of patients with appointments in the upcoming week. Using RegEx, we prospectively identified all patients with breast, liver, or lung cancers at treatment decision points at 2 Cancer Centers' and 2 community hospitals', classified their cancer type, stage, and receptor/biomarker status. We evaluated accuracy using RegEx against manual reviews.</p><p><strong>Results: </strong>Algorithm accuracy to identify patients at treatment decision points revealed 92% True Negative and 53% True Positive rate. Staging accuracy varied from 67% to 95%, and receptor/biomarker status accuracy from 76% to 86%.</p><p><strong>Discussion and conclusion: </strong>Using RegEx significantly reduced the number of patients requiring manual review, demonstrating a reduction in manual labor and potential biases, which can improve efficiency and inclusivity of clinical trial enrollment processes, especially in resource limited or data sensitive environments.</p><p><strong>Trial registration: </strong>NCT05146297.</p>","PeriodicalId":36278,"journal":{"name":"JAMIA Open","volume":"7 4","pages":"ooae131"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11570988/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JAMIA Open","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jamiaopen/ooae131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: To explore implementing regular expressions (RegEx) to streamline patient identification and classification for matching to clinical trials.

Materials and methods: To prepare approaches needed to match patients to relevant cancer clinical trials, we combined NCI's Clinical Trials Search API to extract high-level eligibility criteria, including cancer type, stage, receptor/biomarker status, with similar data of patients with appointments in the upcoming week. Using RegEx, we prospectively identified all patients with breast, liver, or lung cancers at treatment decision points at 2 Cancer Centers' and 2 community hospitals', classified their cancer type, stage, and receptor/biomarker status. We evaluated accuracy using RegEx against manual reviews.

Results: Algorithm accuracy to identify patients at treatment decision points revealed 92% True Negative and 53% True Positive rate. Staging accuracy varied from 67% to 95%, and receptor/biomarker status accuracy from 76% to 86%.

Discussion and conclusion: Using RegEx significantly reduced the number of patients requiring manual review, demonstrating a reduction in manual labor and potential biases, which can improve efficiency and inclusivity of clinical trial enrollment processes, especially in resource limited or data sensitive environments.

Trial registration: NCT05146297.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
实施基于规则的算法,寻找符合癌症临床试验条件的患者。
摘要探索使用正则表达式(RegEx)简化患者识别和分类,以便与临床试验进行匹配:为了准备将患者与相关癌症临床试验相匹配所需的方法,我们将 NCI 的临床试验搜索 API 与下周预约患者的类似数据相结合,以提取高级资格标准(包括癌症类型、分期、受体/生物标记物状态)。利用 RegEx,我们前瞻性地识别了 2 家癌症中心和 2 家社区医院处于治疗决策点的所有乳腺癌、肝癌或肺癌患者,并对其癌症类型、分期和受体/生物标记物状态进行了分类。我们使用 RegEx 与人工审查进行了准确性评估:在治疗决策点识别患者的算法准确率显示,真阴性率为 92%,真阳性率为 53%。分期准确率从67%到95%不等,受体/生物标记物状态准确率从76%到86%不等:使用 RegEx 大幅减少了需要人工审核的患者数量,显示出人工劳动和潜在偏见的减少,这可以提高临床试验注册流程的效率和包容性,尤其是在资源有限或对数据敏感的环境中:试验注册:NCT05146297。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
JAMIA Open
JAMIA Open Medicine-Health Informatics
CiteScore
4.10
自引率
4.80%
发文量
102
审稿时长
16 weeks
期刊最新文献
Implementation of a rule-based algorithm to find patients eligible for cancer clinical trials. Implications of mappings between International Classification of Diseases clinical diagnosis codes and Human Phenotype Ontology terms. MMFP-Tableau: enabling precision mitochondrial medicine through integration, visualization, and analytics of clinical and research health system electronic data. Addressing ethical issues in healthcare artificial intelligence using a lifecycle-informed process. Development of an evidence- and consensus-based Digital Healthcare Equity Framework.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1