A multi-feature fusion graph attention network for decoding motor imagery intention in spinal cord injury patients.

Jiancai Leng, Licai Gao, Xiuquan Jiang, Yitai Lou, Yuan Sun, Chen Wang, Jun Li, Heng Zhao, Feng Chao, Fangzhou Xu, Yang Zhang, Tzyy-Ping Jung
{"title":"A multi-feature fusion graph attention network for decoding motor imagery intention in spinal cord injury patients.","authors":"Jiancai Leng, Licai Gao, Xiuquan Jiang, Yitai Lou, Yuan Sun, Chen Wang, Jun Li, Heng Zhao, Feng Chao, Fangzhou Xu, Yang Zhang, Tzyy-Ping Jung","doi":"10.1088/1741-2552/ad9403","DOIUrl":null,"url":null,"abstract":"<p><p>Electroencephalogram (EEG) signals exhibit multi-domain features, and electrode distributions follow non-Euclidean topology. To fully resolve the EEG signals, this study proposes a Temporal-Frequency-Spatial multi-domain feature fusion Graph Attention Network (TFSGAT) for motor imagery (MI) intention recognition in spinal cord injury (SCI) patients. The proposed model uses phase-locked value (PLV) to extract spatial phase connectivity information between EEG channels and continuous wavelet transform to extract valid EEG information in the time-frequency domain. It then models a graph data structure containing multi-domain information. The gated recurrent unit and GAT learn EEG's dynamic temporal-spatial information. Finally, the fully connected layer outputs the MI intention recognition results. After 10 times 10-fold cross-validation, the proposed model can achieve an average accuracy of 95.82%. Furthermore, this study analyzes the Event-Related Desynchronization/Event-Related Synchronization and PLV brain network to explore the brain activity of SCI patients during MI. This study confirms the potential of the proposed model in terms of EEG decoding performance and provides a reference for the mechanism of neural activity in SCI patients.</p>","PeriodicalId":94096,"journal":{"name":"Journal of neural engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1741-2552/ad9403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Electroencephalogram (EEG) signals exhibit multi-domain features, and electrode distributions follow non-Euclidean topology. To fully resolve the EEG signals, this study proposes a Temporal-Frequency-Spatial multi-domain feature fusion Graph Attention Network (TFSGAT) for motor imagery (MI) intention recognition in spinal cord injury (SCI) patients. The proposed model uses phase-locked value (PLV) to extract spatial phase connectivity information between EEG channels and continuous wavelet transform to extract valid EEG information in the time-frequency domain. It then models a graph data structure containing multi-domain information. The gated recurrent unit and GAT learn EEG's dynamic temporal-spatial information. Finally, the fully connected layer outputs the MI intention recognition results. After 10 times 10-fold cross-validation, the proposed model can achieve an average accuracy of 95.82%. Furthermore, this study analyzes the Event-Related Desynchronization/Event-Related Synchronization and PLV brain network to explore the brain activity of SCI patients during MI. This study confirms the potential of the proposed model in terms of EEG decoding performance and provides a reference for the mechanism of neural activity in SCI patients.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于解码脊髓损伤患者运动意象意图的多特征融合图注意网络。
脑电图(EEG)信号具有多域特征,电极分布遵循非欧几里得拓扑结构。为了全面解析脑电信号,本研究提出了一种时域-频率-空间多域特征融合图注意网络(TFSGAT),用于脊髓损伤(SCI)患者的运动意象(MI)意图识别。该模型利用锁相值(PLV)提取脑电图通道之间的空间相位连接信息,并利用连续小波变换提取时频域的有效脑电图信息。然后对包含多域信息的图数据结构进行建模。门控递归单元和 GAT 学习脑电图的动态时空信息。最后,全连接层输出 MI 意图识别结果。经过 10 次 10 倍交叉验证后,所提模型的平均准确率达到 95.82%。此外,本研究还分析了事件相关非同步化/事件相关同步化和 PLV 大脑网络,以探索 SCI 患者在 MI 期间的大脑活动。本研究证实了所提模型在脑电图解码性能方面的潜力,并为 SCI 患者的神经活动机制提供了参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Attention demands modulate brain electrical microstates and mental fatigue induced by simulated flight tasks. Temporal attention fusion network with custom loss function for EEG-fNIRS classification. Classification of hand movements from EEG using a FusionNet based LSTM network. Frequency-dependent phase entrainment of cortical cell types during tACS: computational modeling evidence. Patient-specific visual neglect severity estimation for stroke patients with neglect using EEG.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1