Regulation of the main terpenoids biosynthesis and accumulation in fruit trees

IF 5.7 1区 农林科学 Q1 HORTICULTURE Horticultural Plant Journal Pub Date : 2024-11-09 DOI:10.1016/j.hpj.2024.08.002
Yujie Hu, Tianyi Zheng, Jie Dong, Wangze Li, Xiaoyu Ma, Jin Li, Yulin Fang, Keqin Chen, Kekun Zhang
{"title":"Regulation of the main terpenoids biosynthesis and accumulation in fruit trees","authors":"Yujie Hu, Tianyi Zheng, Jie Dong, Wangze Li, Xiaoyu Ma, Jin Li, Yulin Fang, Keqin Chen, Kekun Zhang","doi":"10.1016/j.hpj.2024.08.002","DOIUrl":null,"url":null,"abstract":"Terpenoids are vital secondary metabolites in plants that function as agents for defense and stress resistance. These genes not only play crucial roles in plant growth and development but also function in diverse biological group interactions. Terpenoids released by fruit trees possess defensive properties and constitute a class of aromatic compounds. For some fruits, terpenoids are indispensable indicators for evaluating fruit quality and the economic value. Significant research progress has been made in terpenoids biosynthesis and regulation. In this review, we introduce the main terpenoids of fruit trees, emphasize synthetic enzymes and regulatory factors involved in the mevalonate pathway and the methylerythritol pathway, and analyze <ce:italic>TPS</ce:italic> gene family identification and diversity in several fruit tree species. Moreover, the regulation of terpenes biosynthesis, including the molecular interaction mechanisms of environmental factors and hormone signaling pathways, are comprehensively described. Our objective is to summarize the molecular regulatory network and research foundation of terpenoids biosynthesis, providing a reference for investigations of metabolic pathways and promoting the development of techniques for the regulation and breeding of terpenoids in fruit trees.","PeriodicalId":13178,"journal":{"name":"Horticultural Plant Journal","volume":"13 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticultural Plant Journal","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.hpj.2024.08.002","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HORTICULTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Terpenoids are vital secondary metabolites in plants that function as agents for defense and stress resistance. These genes not only play crucial roles in plant growth and development but also function in diverse biological group interactions. Terpenoids released by fruit trees possess defensive properties and constitute a class of aromatic compounds. For some fruits, terpenoids are indispensable indicators for evaluating fruit quality and the economic value. Significant research progress has been made in terpenoids biosynthesis and regulation. In this review, we introduce the main terpenoids of fruit trees, emphasize synthetic enzymes and regulatory factors involved in the mevalonate pathway and the methylerythritol pathway, and analyze TPS gene family identification and diversity in several fruit tree species. Moreover, the regulation of terpenes biosynthesis, including the molecular interaction mechanisms of environmental factors and hormone signaling pathways, are comprehensively described. Our objective is to summarize the molecular regulatory network and research foundation of terpenoids biosynthesis, providing a reference for investigations of metabolic pathways and promoting the development of techniques for the regulation and breeding of terpenoids in fruit trees.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
果树中主要萜类化合物生物合成和积累的调控
萜类化合物是植物中重要的次级代谢产物,具有防御和抗逆的功能。这些基因不仅在植物的生长和发育过程中发挥关键作用,而且还在各种生物群体的相互作用中发挥作用。果树释放的萜类化合物具有防御特性,是一类芳香化合物。对于某些水果来说,萜类化合物是评价水果质量和经济价值不可或缺的指标。萜类化合物的生物合成和调控研究取得了重大进展。在这篇综述中,我们介绍了果树的主要萜类化合物,强调了参与甲羟戊酸途径和季戊四醇途径的合成酶和调控因子,并分析了几个果树物种中 TPS 基因家族的鉴定和多样性。此外,还全面阐述了萜类化合物生物合成的调控,包括环境因素和激素信号通路的分子相互作用机制。我们的目的是总结萜类化合物生物合成的分子调控网络和研究基础,为研究代谢途径提供参考,促进果树萜类化合物调控和育种技术的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Horticultural Plant Journal
Horticultural Plant Journal Environmental Science-Ecology
CiteScore
9.60
自引率
14.00%
发文量
293
审稿时长
33 weeks
期刊介绍: Horticultural Plant Journal (HPJ) is an OPEN ACCESS international journal. HPJ publishes research related to all horticultural plants, including fruits, vegetables, ornamental plants, tea plants, and medicinal plants, etc. The journal covers all aspects of horticultural crop sciences, including germplasm resources, genetics and breeding, tillage and cultivation, physiology and biochemistry, ecology, genomics, biotechnology, plant protection, postharvest processing, etc. Article types include Original research papers, Reviews, and Short communications.
期刊最新文献
Managing virus diseases in citrus: Leveraging high-throughput sequencing for versatile applications BcAHL24-MF1 promotes photomorphogenesis in Brassica campestris via inhibiting over-elongation of hypocotyl under light conditions BoaCRTISO regulates the color and glossiness of Chinese kale through its effects on pigment, abscisic acid, and cuticular wax biosynthesis Regulation of the main terpenoids biosynthesis and accumulation in fruit trees Betula platyphylla glucosyltransferase BpGT14;6 is essential for cell wall development and stress response
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1