{"title":"Improved long-term prediction of chaos using reservoir computing based on stochastic spin–orbit torque devices","authors":"Cen Wang, Xinyao Lei, Kaiming Cai, Xu Ge, Xiaofei Yang, Yue Zhang","doi":"10.1063/5.0231863","DOIUrl":null,"url":null,"abstract":"Predicting chaotic systems is crucial for understanding complex behaviors, yet challenging due to their sensitivity to initial conditions and inherent unpredictability. Probabilistic reservoir computing (RC) is well suited for long-term chaotic predictions by handling complex dynamic systems. Spin–orbit torque (SOT) devices in spintronics, with their nonlinear and probabilistic operations, can enhance performance in these tasks. This study proposes an RC system utilizing SOT devices for predicting chaotic dynamics. By simulating the reservoir in an RC network with SOT devices that achieve nonlinear resistance changes with random distribution, we enhance the robustness for the predictive capability of the model. The RC network predicted the behaviors of the Mackey–Glass and Lorenz chaotic systems, demonstrating that stochastic SOT devices significantly improve long-term prediction accuracy.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":"56 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0231863","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Predicting chaotic systems is crucial for understanding complex behaviors, yet challenging due to their sensitivity to initial conditions and inherent unpredictability. Probabilistic reservoir computing (RC) is well suited for long-term chaotic predictions by handling complex dynamic systems. Spin–orbit torque (SOT) devices in spintronics, with their nonlinear and probabilistic operations, can enhance performance in these tasks. This study proposes an RC system utilizing SOT devices for predicting chaotic dynamics. By simulating the reservoir in an RC network with SOT devices that achieve nonlinear resistance changes with random distribution, we enhance the robustness for the predictive capability of the model. The RC network predicted the behaviors of the Mackey–Glass and Lorenz chaotic systems, demonstrating that stochastic SOT devices significantly improve long-term prediction accuracy.
期刊介绍:
Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology.
In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics.
APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field.
Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.