Aswin Thirunavukkarasu, Mattias Hedenström, Tobias Sparrman, Mats B. Nilsson, Jürgen Schleucher, Mats Öquist
{"title":"Unraveling the dynamics of lignin chemistry on decomposition to understand its contribution to soil organic matter accumulation","authors":"Aswin Thirunavukkarasu, Mattias Hedenström, Tobias Sparrman, Mats B. Nilsson, Jürgen Schleucher, Mats Öquist","doi":"10.1007/s11104-024-07066-y","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Aims</h3><p>Plant inputs are the primary organic carbon source that transforms into soil organic matter (SOM) through microbial processing. One prevailing view is that lignin plays a major role in the accumulation of SOM. This study investigated lignin decomposition using wood from different genotypes of <i>Populus tremula</i> as the model substrate. The genotypes naturally varied in lignin content and composition, resulting in high and low lignin substrates.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>The wood was inoculated with fresh soil and decomposition was interpreted through mass loss and CO<sub>2</sub> produced during a 12-month lab incubation. Detailed information on the decomposition patterns of lignin was obtained by Two-dimensional Nuclear magnetic resonance (2D NMR) spectroscopy on four occasions during the incubations.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>The lignin content per se did not affect the overall decomposition and ~ 60% of the mass was lost in both substrates. In addition, no differences in oxidative enzyme activity could be observed, and the rate of lignin decomposition was similar to that of the carbohydrates. The 2D NMR analysis showed the oxidized syringyl present in the initial samples was the most resistant to degradation among lignin subunits as it followed the order <i>p</i>-hydroxybenzoates > syringyl > guaiacyl > oxidized syringyl. Furthermore, the degradability of β–O–4 linkages in the lignin varied depending on the subunit (syringyl or guaiacyl) it is attached to.</p><h3 data-test=\"abstract-sub-heading\">Conclusions</h3><p>Our study demonstrates that lignin contains fractions that are easily degradable and can break down alongside carbohydrates. Thus, the initial differences in lignin content per se do not necessarily affect magnitude of SOM accumulation.</p>","PeriodicalId":20223,"journal":{"name":"Plant and Soil","volume":"18 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant and Soil","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11104-024-07066-y","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Aims
Plant inputs are the primary organic carbon source that transforms into soil organic matter (SOM) through microbial processing. One prevailing view is that lignin plays a major role in the accumulation of SOM. This study investigated lignin decomposition using wood from different genotypes of Populus tremula as the model substrate. The genotypes naturally varied in lignin content and composition, resulting in high and low lignin substrates.
Methods
The wood was inoculated with fresh soil and decomposition was interpreted through mass loss and CO2 produced during a 12-month lab incubation. Detailed information on the decomposition patterns of lignin was obtained by Two-dimensional Nuclear magnetic resonance (2D NMR) spectroscopy on four occasions during the incubations.
Results
The lignin content per se did not affect the overall decomposition and ~ 60% of the mass was lost in both substrates. In addition, no differences in oxidative enzyme activity could be observed, and the rate of lignin decomposition was similar to that of the carbohydrates. The 2D NMR analysis showed the oxidized syringyl present in the initial samples was the most resistant to degradation among lignin subunits as it followed the order p-hydroxybenzoates > syringyl > guaiacyl > oxidized syringyl. Furthermore, the degradability of β–O–4 linkages in the lignin varied depending on the subunit (syringyl or guaiacyl) it is attached to.
Conclusions
Our study demonstrates that lignin contains fractions that are easily degradable and can break down alongside carbohydrates. Thus, the initial differences in lignin content per se do not necessarily affect magnitude of SOM accumulation.
期刊介绍:
Plant and Soil publishes original papers and review articles exploring the interface of plant biology and soil sciences, and that enhance our mechanistic understanding of plant-soil interactions. We focus on the interface of plant biology and soil sciences, and seek those manuscripts with a strong mechanistic component which develop and test hypotheses aimed at understanding underlying mechanisms of plant-soil interactions. Manuscripts can include both fundamental and applied aspects of mineral nutrition, plant water relations, symbiotic and pathogenic plant-microbe interactions, root anatomy and morphology, soil biology, ecology, agrochemistry and agrophysics, as long as they are hypothesis-driven and enhance our mechanistic understanding. Articles including a major molecular or modelling component also fall within the scope of the journal. All contributions appear in the English language, with consistent spelling, using either American or British English.