Sustainable biosynthesis of caproate from waste activated sludge via electro-fermentation: Perspectives of product spectrum, economic and environmental impacts
{"title":"Sustainable biosynthesis of caproate from waste activated sludge via electro-fermentation: Perspectives of product spectrum, economic and environmental impacts","authors":"Dengfei Li, Shuanglan Cheng, Cristiano Varrone, Bing-Jie Ni, Jingyang Luo, Zhihong Liu, Zhangwei He, Wenzong Liu, Aijuan Zhou, Xiuping Yue","doi":"10.1016/j.cej.2024.157768","DOIUrl":null,"url":null,"abstract":"Electro-fermentation (EF) has emerged as a promising method to produce value-added medium chain fatty acids (MCFAs) via chain elongation (CE). The biorefinery of waste activated sludge (WAS) to MCFAs has been attracting increasing attention. However, so far anaerobic_CE process was commonly employed, while the contribution and mechanism of EF_CE still remain unclear. In the present study, a comprehensive analysis of caproate biosynthesis from prefermented WAS via EF_CE was performed. The reduction in substrates resulted in an increase in caproate production, yielding the maximum caproate (299.8 mg COD/g volatile suspended solid) in the minimum substrate concentration (25 % prefermented WAS, EF13 group). The highest utilization rate (78.76 %) of soluble proteins was also achieved in EF13. Significant positive correlation among caproate yield, electrochemically active bacteria, caproate-synthesizing consortium and homo-acetogen was revealed by molecular ecological network and Mantel test. Further analysis of the metabolic pathways revealed that EF13 demonstrated more key enzymes participated in the production of acetyl-CoA via the Wood-Ljungdahl pathway and the conversation of acetyl-CoA to caproate via the reverse β-oxidation pathway. Moreover, compared to the anaerobic_CE process, the economic benefits of the EF_CE process significantly increased, and the environmental impacts were greatly reduced. The life cycle assessment and economic benefits analysis identified the strengths of EF_CE and proposed a sustainable strategy to facilitate the commercialization of electro-fermentation assisted biorefinery technology.","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":"63 1","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cej.2024.157768","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Electro-fermentation (EF) has emerged as a promising method to produce value-added medium chain fatty acids (MCFAs) via chain elongation (CE). The biorefinery of waste activated sludge (WAS) to MCFAs has been attracting increasing attention. However, so far anaerobic_CE process was commonly employed, while the contribution and mechanism of EF_CE still remain unclear. In the present study, a comprehensive analysis of caproate biosynthesis from prefermented WAS via EF_CE was performed. The reduction in substrates resulted in an increase in caproate production, yielding the maximum caproate (299.8 mg COD/g volatile suspended solid) in the minimum substrate concentration (25 % prefermented WAS, EF13 group). The highest utilization rate (78.76 %) of soluble proteins was also achieved in EF13. Significant positive correlation among caproate yield, electrochemically active bacteria, caproate-synthesizing consortium and homo-acetogen was revealed by molecular ecological network and Mantel test. Further analysis of the metabolic pathways revealed that EF13 demonstrated more key enzymes participated in the production of acetyl-CoA via the Wood-Ljungdahl pathway and the conversation of acetyl-CoA to caproate via the reverse β-oxidation pathway. Moreover, compared to the anaerobic_CE process, the economic benefits of the EF_CE process significantly increased, and the environmental impacts were greatly reduced. The life cycle assessment and economic benefits analysis identified the strengths of EF_CE and proposed a sustainable strategy to facilitate the commercialization of electro-fermentation assisted biorefinery technology.
期刊介绍:
The Chemical Engineering Journal is an international research journal that invites contributions of original and novel fundamental research. It aims to provide an international platform for presenting original fundamental research, interpretative reviews, and discussions on new developments in chemical engineering. The journal welcomes papers that describe novel theory and its practical application, as well as those that demonstrate the transfer of techniques from other disciplines. It also welcomes reports on carefully conducted experimental work that is soundly interpreted. The main focus of the journal is on original and rigorous research results that have broad significance. The Catalysis section within the Chemical Engineering Journal focuses specifically on Experimental and Theoretical studies in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. These studies have industrial impact on various sectors such as chemicals, energy, materials, foods, healthcare, and environmental protection.