Huazeng Yang, Rui Zhang, Zhiyuan Liu, Xin Xu, Yishuo Teng, Ming Hou, Guangshuai Zhang, Yongzhao Hou, Guangwu Wen, Dong Wang
{"title":"Unraveling the chloride ion capture capability of nitrogen-doped porous carbon for capacitive deionization and desalination battery","authors":"Huazeng Yang, Rui Zhang, Zhiyuan Liu, Xin Xu, Yishuo Teng, Ming Hou, Guangshuai Zhang, Yongzhao Hou, Guangwu Wen, Dong Wang","doi":"10.1016/j.cej.2024.157769","DOIUrl":null,"url":null,"abstract":"Developing carbonaceous materials with low cost and high chloride ions capture ability is highly desired but great challenging for the practical application of capacitive deionization (CDI). Herein, we use cheap petroleum coke as precursors to synthesize N-doped activated porous carbon (N-a<sub>4</sub>pC), which exhibited excellent Cl<sup>-</sup> capture capability. The N-a<sub>4</sub>pC electrode possesses a larger capacitance and more pronounced pseudocapacitive characteristics. We then assemble N-a<sub>4</sub>pC//activated carbon (AC) cell with N-a<sub>4</sub>pC as the anode and AC as the cathode, and the N-a<sub>4</sub>pC(Cl<sup>-</sup>)//AC(Na<sup>+</sup>) cell demonstrated high desalination capability of 38.1 mg g<sup>−1</sup>, which is significantly higher than the desalination capability of the AC(Cl<sup>-</sup>)//AC(Na<sup>+</sup>) and AC(Cl<sup>-</sup>)//N-a<sub>4</sub>pC(Na<sup>+</sup>) cells. Density functional theory (DFT) calculations show that N-containing graphene structures have a greater adsorption energy for Cl<sup>-</sup>, and the differential charge density maps indicate that N facilitate the accumulation of weak positive charges. Moreover, CDI cell as desalted batteries to light one light-emitting diode (LED) shows a continuous and stable discharge process. The desorption voltage of the N-a<sub>4</sub>pC(Cl<sup>-</sup>)//AC(Na<sup>+</sup>) cell is influenced by the adsorption voltage and the concentration of the NaCl. Meanwhile, the desorption voltage increases proportionally with the number of cells, demonstrating the stability as a desalting battery. This work demonstrates the significant potential of industrial waste in the development of low cost carbon electrodes, reveals the mechanism behind the enhanced Cl<sup>-</sup> capture capability due to N-doping and pore structure optimization, and systematically showcases the desalting battery performance using a CDI cell during the desorption process.","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":"35 1","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cej.2024.157769","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Developing carbonaceous materials with low cost and high chloride ions capture ability is highly desired but great challenging for the practical application of capacitive deionization (CDI). Herein, we use cheap petroleum coke as precursors to synthesize N-doped activated porous carbon (N-a4pC), which exhibited excellent Cl- capture capability. The N-a4pC electrode possesses a larger capacitance and more pronounced pseudocapacitive characteristics. We then assemble N-a4pC//activated carbon (AC) cell with N-a4pC as the anode and AC as the cathode, and the N-a4pC(Cl-)//AC(Na+) cell demonstrated high desalination capability of 38.1 mg g−1, which is significantly higher than the desalination capability of the AC(Cl-)//AC(Na+) and AC(Cl-)//N-a4pC(Na+) cells. Density functional theory (DFT) calculations show that N-containing graphene structures have a greater adsorption energy for Cl-, and the differential charge density maps indicate that N facilitate the accumulation of weak positive charges. Moreover, CDI cell as desalted batteries to light one light-emitting diode (LED) shows a continuous and stable discharge process. The desorption voltage of the N-a4pC(Cl-)//AC(Na+) cell is influenced by the adsorption voltage and the concentration of the NaCl. Meanwhile, the desorption voltage increases proportionally with the number of cells, demonstrating the stability as a desalting battery. This work demonstrates the significant potential of industrial waste in the development of low cost carbon electrodes, reveals the mechanism behind the enhanced Cl- capture capability due to N-doping and pore structure optimization, and systematically showcases the desalting battery performance using a CDI cell during the desorption process.
期刊介绍:
The Chemical Engineering Journal is an international research journal that invites contributions of original and novel fundamental research. It aims to provide an international platform for presenting original fundamental research, interpretative reviews, and discussions on new developments in chemical engineering. The journal welcomes papers that describe novel theory and its practical application, as well as those that demonstrate the transfer of techniques from other disciplines. It also welcomes reports on carefully conducted experimental work that is soundly interpreted. The main focus of the journal is on original and rigorous research results that have broad significance. The Catalysis section within the Chemical Engineering Journal focuses specifically on Experimental and Theoretical studies in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. These studies have industrial impact on various sectors such as chemicals, energy, materials, foods, healthcare, and environmental protection.