{"title":"Machine learning models with innovative outlier detection techniques for predicting heavy metal contamination in soils","authors":"Ram Proshad, S.M. Asharaful Abedin Asha, Ron Tan, Yineng Lu, Md Anwarul Abedin, Zihao Ding, Shuangting Zhang, Ziyi Li, Geng Chen, Zhuanjun Zhao","doi":"10.1016/j.jhazmat.2024.136536","DOIUrl":null,"url":null,"abstract":"Machine learning (ML) models for accurately predicting heavy metals with inconsistent outputs have improved owing to dataset outliers, which influence model reliability and accuracy. A comprehensive technique that combines machine learning and advanced statistical methods was applied to assess data outlier’s effects on ML models. Ten ML models with three outlier detection methods predicted Cr, Ni, Cd, and Pb in Narayanganj soils. XGBoost with density-based spatial clustering of applications with noise (DBSCAN) improved model efficacy (R<sup>2</sup>). The R2 of Cr, Ni, Cd, and Pb was considerably enhanced by 11.11%, 6.33%, 14.47%, and 5.68%, respectively, indicating that outliers affected the model's HM prediction. Soil factors affected Cr (80%), Ni (72.61%), Cd (53.35%), and Pb (63.47%) concentrations based on feature importance. Contamination factor prediction showed considerable contamination for Cr, Ni, and Cd. LISA revealed Cd (55.4%), Cr (49.3%), and Pb (47.3%) as the significant pollutant (p < 0.05). Moran's I index values for Cr, Ni, Cd, and Pb were 0.65, 0.58, 0.60, and 0.66, respectively, indicating strong positive spatial autocorrelation and clusters with similar contamination. Finally, this work successfully assessed the influence of data outliers on the ML model for soil HM contamination prediction, identifying crucial regions that require rapid conservation measures.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"37 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2024.136536","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Machine learning (ML) models for accurately predicting heavy metals with inconsistent outputs have improved owing to dataset outliers, which influence model reliability and accuracy. A comprehensive technique that combines machine learning and advanced statistical methods was applied to assess data outlier’s effects on ML models. Ten ML models with three outlier detection methods predicted Cr, Ni, Cd, and Pb in Narayanganj soils. XGBoost with density-based spatial clustering of applications with noise (DBSCAN) improved model efficacy (R2). The R2 of Cr, Ni, Cd, and Pb was considerably enhanced by 11.11%, 6.33%, 14.47%, and 5.68%, respectively, indicating that outliers affected the model's HM prediction. Soil factors affected Cr (80%), Ni (72.61%), Cd (53.35%), and Pb (63.47%) concentrations based on feature importance. Contamination factor prediction showed considerable contamination for Cr, Ni, and Cd. LISA revealed Cd (55.4%), Cr (49.3%), and Pb (47.3%) as the significant pollutant (p < 0.05). Moran's I index values for Cr, Ni, Cd, and Pb were 0.65, 0.58, 0.60, and 0.66, respectively, indicating strong positive spatial autocorrelation and clusters with similar contamination. Finally, this work successfully assessed the influence of data outliers on the ML model for soil HM contamination prediction, identifying crucial regions that require rapid conservation measures.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.