Chemically Processed Porous V2O5 Thin-Film Cathodes for High-Performance Thin-film Zn-Ion Batteries

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2024-11-18 DOI:10.1002/adfm.202417607
Jingli Luo, Mengjue Cao, Nibagani Naresh, Jnanraj Borah, Shuhui Li, Tianlei Wang, Bimal K. Sarma, Jianfeng Yao, Ivan P. Parkin, Buddha Deka Boruah
{"title":"Chemically Processed Porous V2O5 Thin-Film Cathodes for High-Performance Thin-film Zn-Ion Batteries","authors":"Jingli Luo, Mengjue Cao, Nibagani Naresh, Jnanraj Borah, Shuhui Li, Tianlei Wang, Bimal K. Sarma, Jianfeng Yao, Ivan P. Parkin, Buddha Deka Boruah","doi":"10.1002/adfm.202417607","DOIUrl":null,"url":null,"abstract":"Thin-film rechargeable batteries have a wide range of applications due to their unique properties such as small size, thinness, and the ability to power smart devices, including portable electronic devices, medical devices, smart cards, RFID tags, and Internet of Things (IoT) devices. Processing thin-film electrodes for these batteries generally relies on standard physical vapor deposition technologies. However, producing porous thin-films using these techniques presents significant challenges. Here, a rapid and cost-effective chemical route for processing porous vanadium oxide (V<sub>2</sub>O<sub>5</sub>) thin-film cathodes for application in Zinc-ion-based thin-film batteries (Zn-TFBs) is explored. The V<sub>2</sub>O<sub>5</sub> precursor process uses an industrially viable spraying technique, which not only offers impressive charge storage performance of an areal capacity of 47.34 µAh cm<sup>−</sup><sup>2</sup>, areal energy of 50.18 µWh cm<sup>−</sup><sup>2</sup>, and areal power of 53 µW cm<sup>−</sup><sup>2</sup> at 50 µA cm<sup>−</sup><sup>2</sup> in the optimized gel-electrolyte composition. This study introduces a cost-effective and industrially viable method for processing highly porous thin-film cathodes, enabling the production of high-performance, affordable, and safer thin-film batteries.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"7 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202417607","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Thin-film rechargeable batteries have a wide range of applications due to their unique properties such as small size, thinness, and the ability to power smart devices, including portable electronic devices, medical devices, smart cards, RFID tags, and Internet of Things (IoT) devices. Processing thin-film electrodes for these batteries generally relies on standard physical vapor deposition technologies. However, producing porous thin-films using these techniques presents significant challenges. Here, a rapid and cost-effective chemical route for processing porous vanadium oxide (V2O5) thin-film cathodes for application in Zinc-ion-based thin-film batteries (Zn-TFBs) is explored. The V2O5 precursor process uses an industrially viable spraying technique, which not only offers impressive charge storage performance of an areal capacity of 47.34 µAh cm2, areal energy of 50.18 µWh cm2, and areal power of 53 µW cm2 at 50 µA cm2 in the optimized gel-electrolyte composition. This study introduces a cost-effective and industrially viable method for processing highly porous thin-film cathodes, enabling the production of high-performance, affordable, and safer thin-film batteries.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于高性能薄膜锌-离子电池的化学加工多孔 V2O5 薄膜阴极
薄膜可充电电池具有体积小、厚度薄等独特性能,能够为便携式电子设备、医疗设备、智能卡、RFID 标签和物联网 (IoT) 设备等智能设备供电,因此应用广泛。这些电池的薄膜电极加工通常依赖于标准的物理气相沉积技术。然而,使用这些技术生产多孔薄膜面临着巨大的挑战。在此,我们探索了一种快速、经济高效的化学路线,用于加工锌离子薄膜电池(Zn-TFBs)中应用的多孔氧化钒(V2O5)薄膜阴极。V2O5 前驱体工艺采用了工业上可行的喷涂技术,在优化的凝胶电解质成分中,该工艺不仅能提供令人印象深刻的电荷存储性能,在 50 µA cm-2 的条件下,磁场容量为 47.34 µAh cm-2,磁场能量为 50.18 µWh cm-2,磁场功率为 53 µW cm-2。这项研究介绍了一种具有成本效益和工业可行性的高多孔薄膜阴极加工方法,从而能够生产出高性能、经济实惠且更安全的薄膜电池。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Versatile Foldable Inkjet‐Printed Thermoacoustic Loudspeaker on Paper Self‐Healing and Stretchable Molecular Ferroelectrics with High Expandability Stress‐Relieving Protective Elastomeric Interphase for Stable Ni‐rich Cathodes In Vivo Screening of Barcoded Gold Nanoparticles Elucidates the Influence of Shapes for Tumor Targeting Surface Electric Dipole Moment Engineering of All‐Inorganic Transparent Solid Matrix for Information Encryption and X‐Ray Imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1