Dual-Surface Polydentate Anchoring Enabled Strain Regulation for Stable and Efficient Perovskite Solar Cells

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2024-11-18 DOI:10.1002/adfm.202415547
Fancong Zeng, Lin Xu, Chencheng Hu, Jiahe Xing, Yanjie Wu, Xue Bai, Biao Dong, Hongwei Song
{"title":"Dual-Surface Polydentate Anchoring Enabled Strain Regulation for Stable and Efficient Perovskite Solar Cells","authors":"Fancong Zeng, Lin Xu, Chencheng Hu, Jiahe Xing, Yanjie Wu, Xue Bai, Biao Dong, Hongwei Song","doi":"10.1002/adfm.202415547","DOIUrl":null,"url":null,"abstract":"Continuous breakthroughs of photoelectric conversion efficiency (PCE) in perovskite solar cells are achieved, but the inherent instability caused by residual tensile strain and interfacial defects remains a major obstacle to their application. In this study, a polydentate ligand-regulated dual-surface stress management strategy for perovskite (PVK) is introduced to eliminate tensile strain and interface defects via multidentate anchoring. 3-amino-5-bromopicolinaldehyde (BD) is employed on the lower surface of PVK, while its −CO, −NH<sub>2</sub>, and pyridine functional groups facilitate the bridging of SnO<sub>2</sub> with PVK, alleviating tensile stress and lowering interfacial energy barriers. For the upper surface, the bis−SO<sub>2</sub>, pyridine, and bis−CF<sub>3</sub> functional groups of N-(5-Chloro-2-pyridyl) bis(trifluoromethanesulfonimide) (FC) are utilized to increase the ion migration energy barrier through anchoring, which effectively diminishes tensile stress and defects. Besides, −CF<sub>3</sub> also constructs a hydrophobic barrier on the upper surface. Notably, tensile stress successfully transforms into compressive stress based on the dual-surface stress regulation, significantly improving the framework stability of PVK. Consequently, the devices treated with BD and FC achieve an elevated open-circuit voltage of 1.24 V and PCE of 24.70%. The modified device (unencapsulated) maintains 92% of initial PCE after 2000 h in the atmosphere and 91% after 500 h under 85% RH, showcasing enhanced stability.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"128 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202415547","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Continuous breakthroughs of photoelectric conversion efficiency (PCE) in perovskite solar cells are achieved, but the inherent instability caused by residual tensile strain and interfacial defects remains a major obstacle to their application. In this study, a polydentate ligand-regulated dual-surface stress management strategy for perovskite (PVK) is introduced to eliminate tensile strain and interface defects via multidentate anchoring. 3-amino-5-bromopicolinaldehyde (BD) is employed on the lower surface of PVK, while its −CO, −NH2, and pyridine functional groups facilitate the bridging of SnO2 with PVK, alleviating tensile stress and lowering interfacial energy barriers. For the upper surface, the bis−SO2, pyridine, and bis−CF3 functional groups of N-(5-Chloro-2-pyridyl) bis(trifluoromethanesulfonimide) (FC) are utilized to increase the ion migration energy barrier through anchoring, which effectively diminishes tensile stress and defects. Besides, −CF3 also constructs a hydrophobic barrier on the upper surface. Notably, tensile stress successfully transforms into compressive stress based on the dual-surface stress regulation, significantly improving the framework stability of PVK. Consequently, the devices treated with BD and FC achieve an elevated open-circuit voltage of 1.24 V and PCE of 24.70%. The modified device (unencapsulated) maintains 92% of initial PCE after 2000 h in the atmosphere and 91% after 500 h under 85% RH, showcasing enhanced stability.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
双表面多齿锚定实现应变调节,实现稳定高效的 Perovskite 太阳能电池
包光体太阳能电池的光电转换效率(PCE)不断取得突破,但残余拉伸应变和界面缺陷导致的固有不稳定性仍然是其应用的主要障碍。本研究介绍了一种多齿配体调控的双表面应力管理策略,通过多齿锚定消除包晶石(PVK)的拉伸应变和界面缺陷。3-amino-5-bromopicolinaldehyde (BD) 被用于 PVK 的下表面,而其 -CO、-NH2 和吡啶官能团促进了二氧化锡与 PVK 的桥接,减轻了拉伸应力并降低了界面能垒。在上表面,利用 N-(5-氯-2-吡啶基)双(三氟甲烷磺酰亚胺)(FC)的双-SO2、吡啶和双-CF3 官能团,通过锚定增加离子迁移能垒,从而有效减小拉伸应力和缺陷。此外,-CF3 还能在上表面构建疏水屏障。值得注意的是,在双表面应力调节的基础上,拉应力成功地转化为压应力,大大提高了 PVK 的框架稳定性。因此,经过 BD 和 FC 处理的器件的开路电压达到 1.24 V,PCE 达到 24.70%。改进后的器件(未封装)在大气中放置 2000 小时后仍能保持 92% 的初始 PCE,在 85% 相对湿度条件下放置 500 小时后仍能保持 91% 的 PCE,显示出更高的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Versatile Foldable Inkjet‐Printed Thermoacoustic Loudspeaker on Paper Self‐Healing and Stretchable Molecular Ferroelectrics with High Expandability Stress‐Relieving Protective Elastomeric Interphase for Stable Ni‐rich Cathodes In Vivo Screening of Barcoded Gold Nanoparticles Elucidates the Influence of Shapes for Tumor Targeting Surface Electric Dipole Moment Engineering of All‐Inorganic Transparent Solid Matrix for Information Encryption and X‐Ray Imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1