Jin Cao, Shangxian Chen, Zhengde Han, Ye-Tang Pan, Yichao Lin, Wei Wang, Rongjie Yang
{"title":"Covalent metal–organic porous polymer on ZIF-67 realize anti-UV and highly stressed flame retardant epoxy composites","authors":"Jin Cao, Shangxian Chen, Zhengde Han, Ye-Tang Pan, Yichao Lin, Wei Wang, Rongjie Yang","doi":"10.1016/j.cej.2024.157758","DOIUrl":null,"url":null,"abstract":"Ferrocene (Fc) and metal–organic frameworks (MOFs) are established as effective functional additives in polymer composites, known for their synergistic effects. However, simple physical mixing does not fully harness their potential. To optimize their performance, we developed a method to graft ferrocene onto zeolitic imidazolate frameworks (ZIFs) via a Schiff base structure, followed by constructing a ferrocene-based covalent metal–organic porous polymer (CMOPP) network using Friedel-Crafts alkylation. This approach addresses the mesoporous structure limitation in ZIFs. During this process, the imidazole ligands are etched, yielding a yolk-shell structured, hierarchically nanoporous flame retardant. The synergy between ferrocene and ZIF significantly enhances the UV protection of epoxy resin, with a 99.1% reduction in UV transmittance. Additionally, ferrocene improves the filler-matrix compatibility, increasing tensile strength by 15.1%. This combination of flame-retardant elements and the porous structure’s adsorption capacity imparts exceptional flame retardancy and smoke suppression to the epoxy resin, evidenced by a Limiting Oxygen Index of 28.3% and a V-0 rating in the UL-94 test. Notable reductions include 56.5% in peak heat release rate, 55.1% in peak smoke production rate, and 71.6% in peak carbon monoxide production. This work introduces a novel strategy for designing high-performance multifunctional flame retardants.","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":"35 1","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cej.2024.157758","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Ferrocene (Fc) and metal–organic frameworks (MOFs) are established as effective functional additives in polymer composites, known for their synergistic effects. However, simple physical mixing does not fully harness their potential. To optimize their performance, we developed a method to graft ferrocene onto zeolitic imidazolate frameworks (ZIFs) via a Schiff base structure, followed by constructing a ferrocene-based covalent metal–organic porous polymer (CMOPP) network using Friedel-Crafts alkylation. This approach addresses the mesoporous structure limitation in ZIFs. During this process, the imidazole ligands are etched, yielding a yolk-shell structured, hierarchically nanoporous flame retardant. The synergy between ferrocene and ZIF significantly enhances the UV protection of epoxy resin, with a 99.1% reduction in UV transmittance. Additionally, ferrocene improves the filler-matrix compatibility, increasing tensile strength by 15.1%. This combination of flame-retardant elements and the porous structure’s adsorption capacity imparts exceptional flame retardancy and smoke suppression to the epoxy resin, evidenced by a Limiting Oxygen Index of 28.3% and a V-0 rating in the UL-94 test. Notable reductions include 56.5% in peak heat release rate, 55.1% in peak smoke production rate, and 71.6% in peak carbon monoxide production. This work introduces a novel strategy for designing high-performance multifunctional flame retardants.
期刊介绍:
The Chemical Engineering Journal is an international research journal that invites contributions of original and novel fundamental research. It aims to provide an international platform for presenting original fundamental research, interpretative reviews, and discussions on new developments in chemical engineering. The journal welcomes papers that describe novel theory and its practical application, as well as those that demonstrate the transfer of techniques from other disciplines. It also welcomes reports on carefully conducted experimental work that is soundly interpreted. The main focus of the journal is on original and rigorous research results that have broad significance. The Catalysis section within the Chemical Engineering Journal focuses specifically on Experimental and Theoretical studies in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. These studies have industrial impact on various sectors such as chemicals, energy, materials, foods, healthcare, and environmental protection.