Xiangrui Meng , Muhammad Riaz Ahmad , Mingzheng Zhu , Bing Chen , Liyan Wang
{"title":"Hydration mechanism and potential as solid-state electrolytes in sodium chloride-magnesium phosphate composite","authors":"Xiangrui Meng , Muhammad Riaz Ahmad , Mingzheng Zhu , Bing Chen , Liyan Wang","doi":"10.1016/j.cemconcomp.2024.105862","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the feasibility of NaCl based magnesium phosphate cement (NaCl-MPC) composites as a solid electrolyte for energy storage applications by analyzing the physical, mechanical, hydration and electrochemical properties of composites. The results indicated that the incorporation of NaCl greatly improved the mechanical properties and ionic conductivity of composites, demonstrating enhanced electrochemical stability, making it a promising energy storage material. NaCl induced complex physical and chemical interactions within the MPC system by facilitating the filling of micropores and microcracks, providing the additional nucleation sites and converting intermediate products into struvite. NaCl also reacted chemically in the MPC system to produce small amounts of hazenite crystals. These effects ultimately led to the densification of the microstructure of MPC and significantly improved its mechanical properties. Generally, the improvement of ionic conductivity of solid electrolytes compromises their mechanical properties. However, the NaCl-MPC composites in this study showed significant improvement both in ionic conductivity and mechanical properties, highlighting their potential for advanced energy storage applications.</div></div>","PeriodicalId":9865,"journal":{"name":"Cement & concrete composites","volume":"156 ","pages":"Article 105862"},"PeriodicalIF":10.8000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement & concrete composites","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0958946524004359","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study explores the feasibility of NaCl based magnesium phosphate cement (NaCl-MPC) composites as a solid electrolyte for energy storage applications by analyzing the physical, mechanical, hydration and electrochemical properties of composites. The results indicated that the incorporation of NaCl greatly improved the mechanical properties and ionic conductivity of composites, demonstrating enhanced electrochemical stability, making it a promising energy storage material. NaCl induced complex physical and chemical interactions within the MPC system by facilitating the filling of micropores and microcracks, providing the additional nucleation sites and converting intermediate products into struvite. NaCl also reacted chemically in the MPC system to produce small amounts of hazenite crystals. These effects ultimately led to the densification of the microstructure of MPC and significantly improved its mechanical properties. Generally, the improvement of ionic conductivity of solid electrolytes compromises their mechanical properties. However, the NaCl-MPC composites in this study showed significant improvement both in ionic conductivity and mechanical properties, highlighting their potential for advanced energy storage applications.
期刊介绍:
Cement & concrete composites focuses on advancements in cement-concrete composite technology and the production, use, and performance of cement-based construction materials. It covers a wide range of materials, including fiber-reinforced composites, polymer composites, ferrocement, and those incorporating special aggregates or waste materials. Major themes include microstructure, material properties, testing, durability, mechanics, modeling, design, fabrication, and practical applications. The journal welcomes papers on structural behavior, field studies, repair and maintenance, serviceability, and sustainability. It aims to enhance understanding, provide a platform for unconventional materials, promote low-cost energy-saving materials, and bridge the gap between materials science, engineering, and construction. Special issues on emerging topics are also published to encourage collaboration between materials scientists, engineers, designers, and fabricators.