{"title":"Novel oxidant-free VUV/Fe2+/oxalate process for high-efficiency removal of norfloxacin: Oxidation performance and synergistic mechanism","authors":"Chuang Wang, Xiaohui Wang, Jinying Du, Renjian Deng, Bozhi Ren, Wenhao Wang, Baolin Hou, Bingzhi Liu, Zhiwei Zhao","doi":"10.1016/j.cej.2024.157779","DOIUrl":null,"url":null,"abstract":"Based on Vacuum UV (VUV) in situ cracking water to generate reactive oxygen species (ROS) and promote Fe<sup>2+</sup>/Fe<sup>3+</sup> redox cycle, a novel oxidant-free VUV/Fe<sup>2+</sup>/oxalate (Ox) homogeneous oxidation process was built to efficiently degrade norfloxacin (NOR). The performance and synergistic mechanism of VUV/Fe<sup>2+</sup>/Ox for NOR degradation under near-neutral conditions were investigated. Compared with sub-processes, VUV/Fe<sup>2+</sup>/Ox obviously accelerated NOR oxidation and reduced energy consumption, and its synergistic factor of NOR removal was 2.32. Effects of operating parameters Fe<sup>2+</sup>, Ox dose and solution pH on VUV/Fe<sup>2+</sup>/Ox and their mechanisms were analyzed. Synergistic mechanisms of NOR degradation via VUV/Fe<sup>2+</sup>/Ox, such as in situ generation of H<sub>2</sub>O<sub>2</sub>, Fe<sup>2+</sup>/Fe<sup>3+</sup> redox cycle, ROS characterization and contribution analysis, NOR degradation pathways and its toxicity changes were also investigated. Through the use of ROS fluorescence characterizations and quenching experiments, hydroxyl radical and superoxide radical were identified as primary ROS in VUV/Fe<sup>2+</sup>/Ox, and their contributions to NOR degradation were 73.17 % and 20.91 %, respectively. Besides, synergistic mechanisms of VUV/Fe<sup>2+</sup>/Ox process, which mainly included the respective roles of VUV irradiation, Fe<sup>2+</sup> and Ox, were also recommended. Furthermore, effects of chelators and water matrices on NOR degradation via VUV/Fe<sup>2+</sup>/Ox were also researched. VUV/Fe<sup>2+</sup>/Ox process showed satisfactory NOR degradation effects in actual waters, indicating its practical application potential. The degradation of NOR by novel VUV/Fe<sup>2+</sup>/Ox process significantly reduced its environmental and health hazards.","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":"174 1","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cej.2024.157779","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Based on Vacuum UV (VUV) in situ cracking water to generate reactive oxygen species (ROS) and promote Fe2+/Fe3+ redox cycle, a novel oxidant-free VUV/Fe2+/oxalate (Ox) homogeneous oxidation process was built to efficiently degrade norfloxacin (NOR). The performance and synergistic mechanism of VUV/Fe2+/Ox for NOR degradation under near-neutral conditions were investigated. Compared with sub-processes, VUV/Fe2+/Ox obviously accelerated NOR oxidation and reduced energy consumption, and its synergistic factor of NOR removal was 2.32. Effects of operating parameters Fe2+, Ox dose and solution pH on VUV/Fe2+/Ox and their mechanisms were analyzed. Synergistic mechanisms of NOR degradation via VUV/Fe2+/Ox, such as in situ generation of H2O2, Fe2+/Fe3+ redox cycle, ROS characterization and contribution analysis, NOR degradation pathways and its toxicity changes were also investigated. Through the use of ROS fluorescence characterizations and quenching experiments, hydroxyl radical and superoxide radical were identified as primary ROS in VUV/Fe2+/Ox, and their contributions to NOR degradation were 73.17 % and 20.91 %, respectively. Besides, synergistic mechanisms of VUV/Fe2+/Ox process, which mainly included the respective roles of VUV irradiation, Fe2+ and Ox, were also recommended. Furthermore, effects of chelators and water matrices on NOR degradation via VUV/Fe2+/Ox were also researched. VUV/Fe2+/Ox process showed satisfactory NOR degradation effects in actual waters, indicating its practical application potential. The degradation of NOR by novel VUV/Fe2+/Ox process significantly reduced its environmental and health hazards.
期刊介绍:
The Chemical Engineering Journal is an international research journal that invites contributions of original and novel fundamental research. It aims to provide an international platform for presenting original fundamental research, interpretative reviews, and discussions on new developments in chemical engineering. The journal welcomes papers that describe novel theory and its practical application, as well as those that demonstrate the transfer of techniques from other disciplines. It also welcomes reports on carefully conducted experimental work that is soundly interpreted. The main focus of the journal is on original and rigorous research results that have broad significance. The Catalysis section within the Chemical Engineering Journal focuses specifically on Experimental and Theoretical studies in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. These studies have industrial impact on various sectors such as chemicals, energy, materials, foods, healthcare, and environmental protection.