Yu Ni, Ruixin Zhao, Mei Jiang, Dongmei Bi, Jiyan Ma, Yongjun Li
{"title":"Synergistic effect of nitrogen-rich pyrolysis of three components and nitrogen transformation mechanism","authors":"Yu Ni, Ruixin Zhao, Mei Jiang, Dongmei Bi, Jiyan Ma, Yongjun Li","doi":"10.1016/j.seppur.2024.130604","DOIUrl":null,"url":null,"abstract":"The synergistic mechanism of nitrogen-containing chemicals (NCCs) production was explored from the co-pyrolysis of corn cob and the three major biomass components (cellulose, xylan, and lignin) with urea. Compared to individual pyrolysis, the stability of co-pyrolysis oil was significantly enhanced. The three components showed a synergistic effect during co-pyrolysis. The phenolic compounds generated from lignin interacted with the pyran compounds produced from cellulose or xylan. Especially in the presence of urea, this cross-reaction enhanced the formation of nitrogen-containing heterocycles (NHCs). At 500 ℃, the highest yield of NCCs was observed in the co-pyrolysis oil of corn cob and urea, reaching 47.6 wt%. The NHCs exhibited a selectivity of up to 96.9 wt%. the high concentration of urea promoted the pyrolysis of hemicellulose and cellulose, inhibiting the reaction between cellulose-derived products and free amines to form amines. FT-IR analysis of the char revealed that the addition of urea promoted the decomposition of corn cob, enhancing C–H bond breakdown and dehydrogenation reactions. Finally, a potential formation mechanism for The primary NHCs in corn cob pyrolysis oil was pyridine during the co-pyrolysis of corn cob and urea were proposed. The findings of this paper provide theoretical support for the production of NCCs from biomass through the synergistic interaction of its three components.","PeriodicalId":427,"journal":{"name":"Separation and Purification Technology","volume":"18 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separation and Purification Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.seppur.2024.130604","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The synergistic mechanism of nitrogen-containing chemicals (NCCs) production was explored from the co-pyrolysis of corn cob and the three major biomass components (cellulose, xylan, and lignin) with urea. Compared to individual pyrolysis, the stability of co-pyrolysis oil was significantly enhanced. The three components showed a synergistic effect during co-pyrolysis. The phenolic compounds generated from lignin interacted with the pyran compounds produced from cellulose or xylan. Especially in the presence of urea, this cross-reaction enhanced the formation of nitrogen-containing heterocycles (NHCs). At 500 ℃, the highest yield of NCCs was observed in the co-pyrolysis oil of corn cob and urea, reaching 47.6 wt%. The NHCs exhibited a selectivity of up to 96.9 wt%. the high concentration of urea promoted the pyrolysis of hemicellulose and cellulose, inhibiting the reaction between cellulose-derived products and free amines to form amines. FT-IR analysis of the char revealed that the addition of urea promoted the decomposition of corn cob, enhancing C–H bond breakdown and dehydrogenation reactions. Finally, a potential formation mechanism for The primary NHCs in corn cob pyrolysis oil was pyridine during the co-pyrolysis of corn cob and urea were proposed. The findings of this paper provide theoretical support for the production of NCCs from biomass through the synergistic interaction of its three components.
期刊介绍:
Separation and Purification Technology is a premier journal committed to sharing innovative methods for separation and purification in chemical and environmental engineering, encompassing both homogeneous solutions and heterogeneous mixtures. Our scope includes the separation and/or purification of liquids, vapors, and gases, as well as carbon capture and separation techniques. However, it's important to note that methods solely intended for analytical purposes are not within the scope of the journal. Additionally, disciplines such as soil science, polymer science, and metallurgy fall outside the purview of Separation and Purification Technology. Join us in advancing the field of separation and purification methods for sustainable solutions in chemical and environmental engineering.