{"title":"Enhanced Cr(VI) and nitrate reduction using rGO/nZVI coupled hydrogen autotrophs under weak magnetic field: Performance and mechanisms","authors":"Zifang Chi, Xinyang Liu, Huai Li","doi":"10.1016/j.seppur.2024.130585","DOIUrl":null,"url":null,"abstract":"The compound pollution of nitrate and hexavalent chromium (Cr(VI)) in groundwater poses a serious hazard to human health and ecology. The use of H<sub>2</sub>-connected graphene oxide loaded nano zero-valent iron (rGO/nZVI) chemical reduction coupled with hydrogen autotrophic bioreduction system is expected to reduce the economic cost and alleviate the problem of gas blockage. In this study, we investigated the process and mechanism of the removal of NO<sub>3</sub><sup>–</sup>/Cr(VI) compound pollution by rGO/nZVI coupled HAM under weak magnetic field (WMF). The results showed that rGO/nZVI coupled HAM system had the highest removal of NO<sub>3</sub><sup>–</sup> (93.8 %), and the allocation ratio of chemical reduction to biological reduction of nitrate was about 4:1. Under the compound pollution conditions, the removal of Cr(VI) in the coupled system could reach 100 %. The abiotic reaction mechanism should be the main pathway for Cr(VI) removal, and the ratio of chemical reduction to biological reduction was 99:1 within 24 h. The results showed that the chemical reduction and biological reduction of Cr(VI) in the coupled system was the most effective way to remove Cr(VI). High N<sub>2</sub> conversion of rGO/nZVI coupled with HAM system at 30 mT was obtained (66.98 % and 43.17 %) at NO<sub>3</sub><sup>–</sup> and NO<sub>3</sub><sup>–</sup>/Cr(VI) composite contamination systems, respectively. The presence of WMF corroded rGO/nZVI towards lepidocrocite moving the denitrification process towards harmlessness (high N<sub>2</sub> selectivity). This finding provides a theoretical basis of the coupled system of rGO/nZVI and HAM for the groundwater compound pollution removal.","PeriodicalId":427,"journal":{"name":"Separation and Purification Technology","volume":"11 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separation and Purification Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.seppur.2024.130585","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The compound pollution of nitrate and hexavalent chromium (Cr(VI)) in groundwater poses a serious hazard to human health and ecology. The use of H2-connected graphene oxide loaded nano zero-valent iron (rGO/nZVI) chemical reduction coupled with hydrogen autotrophic bioreduction system is expected to reduce the economic cost and alleviate the problem of gas blockage. In this study, we investigated the process and mechanism of the removal of NO3–/Cr(VI) compound pollution by rGO/nZVI coupled HAM under weak magnetic field (WMF). The results showed that rGO/nZVI coupled HAM system had the highest removal of NO3– (93.8 %), and the allocation ratio of chemical reduction to biological reduction of nitrate was about 4:1. Under the compound pollution conditions, the removal of Cr(VI) in the coupled system could reach 100 %. The abiotic reaction mechanism should be the main pathway for Cr(VI) removal, and the ratio of chemical reduction to biological reduction was 99:1 within 24 h. The results showed that the chemical reduction and biological reduction of Cr(VI) in the coupled system was the most effective way to remove Cr(VI). High N2 conversion of rGO/nZVI coupled with HAM system at 30 mT was obtained (66.98 % and 43.17 %) at NO3– and NO3–/Cr(VI) composite contamination systems, respectively. The presence of WMF corroded rGO/nZVI towards lepidocrocite moving the denitrification process towards harmlessness (high N2 selectivity). This finding provides a theoretical basis of the coupled system of rGO/nZVI and HAM for the groundwater compound pollution removal.
期刊介绍:
Separation and Purification Technology is a premier journal committed to sharing innovative methods for separation and purification in chemical and environmental engineering, encompassing both homogeneous solutions and heterogeneous mixtures. Our scope includes the separation and/or purification of liquids, vapors, and gases, as well as carbon capture and separation techniques. However, it's important to note that methods solely intended for analytical purposes are not within the scope of the journal. Additionally, disciplines such as soil science, polymer science, and metallurgy fall outside the purview of Separation and Purification Technology. Join us in advancing the field of separation and purification methods for sustainable solutions in chemical and environmental engineering.