Interfacial Mo-N bonding enhancement of N-doped carbon nanosheets-stabilized ultrafine MoS2 enable ultrafast and durable sodium ion half/full batteries

IF 13.3 1区 工程技术 Q1 ENGINEERING, CHEMICAL Chemical Engineering Journal Pub Date : 2024-11-19 DOI:10.1016/j.cej.2024.157786
Dongfei Sun, Sen Lin, Shengxu Kuai, Tiantian Zhang, Lei Liu, Jingxin Zhao, Xiaozhong Zhou, Wenwen Liu, Bingang Xu
{"title":"Interfacial Mo-N bonding enhancement of N-doped carbon nanosheets-stabilized ultrafine MoS2 enable ultrafast and durable sodium ion half/full batteries","authors":"Dongfei Sun, Sen Lin, Shengxu Kuai, Tiantian Zhang, Lei Liu, Jingxin Zhao, Xiaozhong Zhou, Wenwen Liu, Bingang Xu","doi":"10.1016/j.cej.2024.157786","DOIUrl":null,"url":null,"abstract":"The structural stability and Na<sup>+</sup> diffusion kinetics of two-dimensional layered materials are critical to deliver efficient Na<sup>+</sup> storage. Here, few-layer MoS<sub>2</sub> nanocrystals were anchored on N-doped carbon nanosheets (MoS<sub>2</sub>@NCs), which realizes fast Na<sup>+</sup> storage and long cycle life. The tight chemical bonding (Mo-N-C bonds) of N atom to MoS<sub>2</sub> nanocrystals and carbon nanosheets improves the electronic conductivity and the structural stability of MoS<sub>2</sub>@NCs, while the carbon nanosheets network supports the MoS<sub>2</sub>@NCs structure to reduce the volume effect and provides a surface-dominated mechanism for fast Na<sup>+</sup> diffusion. Density functional theory results show that the low diffusion barrier of MoS<sub>2</sub>@NCs with Mo-N-C bonds accelerates the Na<sup>+</sup> transfer kinetics. Consequently, MoS<sub>2</sub>@NCs possesses superior rate capability of 307 mA h g<sup>−1</sup> at 20 A/g and excellent long-term stability over 3,000 cycles. The reversible Na<sup>+</sup> (de)insertion behavior is elucidated through in-situ EIS and ex-situ XRD technology.<!-- --> <!-- -->In addition, the assembled MoS<sub>2</sub>@NCs//Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>/C full cell also exhibits a high reversible capacity and good cycle stability. This work opens a new route for optimizing two-dimensional layered materials that can be used for high energy density rechargeable SIBs.","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":"9 1","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cej.2024.157786","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The structural stability and Na+ diffusion kinetics of two-dimensional layered materials are critical to deliver efficient Na+ storage. Here, few-layer MoS2 nanocrystals were anchored on N-doped carbon nanosheets (MoS2@NCs), which realizes fast Na+ storage and long cycle life. The tight chemical bonding (Mo-N-C bonds) of N atom to MoS2 nanocrystals and carbon nanosheets improves the electronic conductivity and the structural stability of MoS2@NCs, while the carbon nanosheets network supports the MoS2@NCs structure to reduce the volume effect and provides a surface-dominated mechanism for fast Na+ diffusion. Density functional theory results show that the low diffusion barrier of MoS2@NCs with Mo-N-C bonds accelerates the Na+ transfer kinetics. Consequently, MoS2@NCs possesses superior rate capability of 307 mA h g−1 at 20 A/g and excellent long-term stability over 3,000 cycles. The reversible Na+ (de)insertion behavior is elucidated through in-situ EIS and ex-situ XRD technology. In addition, the assembled MoS2@NCs//Na3V2(PO4)3/C full cell also exhibits a high reversible capacity and good cycle stability. This work opens a new route for optimizing two-dimensional layered materials that can be used for high energy density rechargeable SIBs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
掺杂 N 的碳纳米片稳定超细 MoS2 的界面 Mo-N 键增强功能可实现超快、耐用的钠离子半/全电池
二维层状材料的结构稳定性和 Na+ 扩散动力学是实现高效 Na+ 储存的关键。在这里,几层 MoS2 纳米晶体被锚定在掺杂 N 的碳纳米片(MoS2@NCs)上,从而实现了快速 Na+ 储存和长循环寿命。N原子与MoS2纳米晶体和碳纳米片的紧密化学键(Mo-N-C键)提高了MoS2@NCs的电子传导性和结构稳定性,而碳纳米片网络则支撑了MoS2@NCs结构以降低体积效应,并为Na+的快速扩散提供了表面主导机制。密度泛函理论结果表明,具有 Mo-N-C 键的 MoS2@NCs 的低扩散障碍加速了 Na+ 的转移动力学。因此,MoS2@NCs 在 20 A/g 时具有 307 mA h g-1 的卓越速率能力和超过 3,000 次循环的出色长期稳定性。通过原位 EIS 和原位 XRD 技术阐明了 Na+(脱)插入的可逆行为。此外,组装后的 MoS2@NCs//Na3V2(PO4)3/C 全电池也表现出较高的可逆容量和良好的循环稳定性。这项工作为优化可用于高能量密度可充电 SIB 的二维层状材料开辟了一条新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Engineering Journal
Chemical Engineering Journal 工程技术-工程:化工
CiteScore
21.70
自引率
9.30%
发文量
6781
审稿时长
2.4 months
期刊介绍: The Chemical Engineering Journal is an international research journal that invites contributions of original and novel fundamental research. It aims to provide an international platform for presenting original fundamental research, interpretative reviews, and discussions on new developments in chemical engineering. The journal welcomes papers that describe novel theory and its practical application, as well as those that demonstrate the transfer of techniques from other disciplines. It also welcomes reports on carefully conducted experimental work that is soundly interpreted. The main focus of the journal is on original and rigorous research results that have broad significance. The Catalysis section within the Chemical Engineering Journal focuses specifically on Experimental and Theoretical studies in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. These studies have industrial impact on various sectors such as chemicals, energy, materials, foods, healthcare, and environmental protection.
期刊最新文献
Corrigendum to “Engineering prodrug nanoparticles for targeted therapy in heterogeneous glioblastoma” [Chem. Eng. J. 474 (2023) 145557] Regulating interlayer charge transfer in MoS2 via in-situ loading of Pd-metallene to enhance piezo-catalytic degradation efficiency: Contributions of low free energy Compromise boosted high capacitive energy storage in lead-free (Bi0.5Na0.5)TiO3 −based relaxor ferroelectrics by phase structure modulation and defect engineering Wide-temperature zinc-iodine batteries enabling by a Zn-ion conducting covalent organic framework buffer layer Binding energy crossover mechanism enables low-temperature hydrogen storage performance of dual-phase TiZrCrMnNi(VFe) high-entropy alloy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1