Dongfei Sun, Sen Lin, Shengxu Kuai, Tiantian Zhang, Lei Liu, Jingxin Zhao, Xiaozhong Zhou, Wenwen Liu, Bingang Xu
{"title":"Interfacial Mo-N bonding enhancement of N-doped carbon nanosheets-stabilized ultrafine MoS2 enable ultrafast and durable sodium ion half/full batteries","authors":"Dongfei Sun, Sen Lin, Shengxu Kuai, Tiantian Zhang, Lei Liu, Jingxin Zhao, Xiaozhong Zhou, Wenwen Liu, Bingang Xu","doi":"10.1016/j.cej.2024.157786","DOIUrl":null,"url":null,"abstract":"The structural stability and Na<sup>+</sup> diffusion kinetics of two-dimensional layered materials are critical to deliver efficient Na<sup>+</sup> storage. Here, few-layer MoS<sub>2</sub> nanocrystals were anchored on N-doped carbon nanosheets (MoS<sub>2</sub>@NCs), which realizes fast Na<sup>+</sup> storage and long cycle life. The tight chemical bonding (Mo-N-C bonds) of N atom to MoS<sub>2</sub> nanocrystals and carbon nanosheets improves the electronic conductivity and the structural stability of MoS<sub>2</sub>@NCs, while the carbon nanosheets network supports the MoS<sub>2</sub>@NCs structure to reduce the volume effect and provides a surface-dominated mechanism for fast Na<sup>+</sup> diffusion. Density functional theory results show that the low diffusion barrier of MoS<sub>2</sub>@NCs with Mo-N-C bonds accelerates the Na<sup>+</sup> transfer kinetics. Consequently, MoS<sub>2</sub>@NCs possesses superior rate capability of 307 mA h g<sup>−1</sup> at 20 A/g and excellent long-term stability over 3,000 cycles. The reversible Na<sup>+</sup> (de)insertion behavior is elucidated through in-situ EIS and ex-situ XRD technology.<!-- --> <!-- -->In addition, the assembled MoS<sub>2</sub>@NCs//Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>/C full cell also exhibits a high reversible capacity and good cycle stability. This work opens a new route for optimizing two-dimensional layered materials that can be used for high energy density rechargeable SIBs.","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":"9 1","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cej.2024.157786","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The structural stability and Na+ diffusion kinetics of two-dimensional layered materials are critical to deliver efficient Na+ storage. Here, few-layer MoS2 nanocrystals were anchored on N-doped carbon nanosheets (MoS2@NCs), which realizes fast Na+ storage and long cycle life. The tight chemical bonding (Mo-N-C bonds) of N atom to MoS2 nanocrystals and carbon nanosheets improves the electronic conductivity and the structural stability of MoS2@NCs, while the carbon nanosheets network supports the MoS2@NCs structure to reduce the volume effect and provides a surface-dominated mechanism for fast Na+ diffusion. Density functional theory results show that the low diffusion barrier of MoS2@NCs with Mo-N-C bonds accelerates the Na+ transfer kinetics. Consequently, MoS2@NCs possesses superior rate capability of 307 mA h g−1 at 20 A/g and excellent long-term stability over 3,000 cycles. The reversible Na+ (de)insertion behavior is elucidated through in-situ EIS and ex-situ XRD technology. In addition, the assembled MoS2@NCs//Na3V2(PO4)3/C full cell also exhibits a high reversible capacity and good cycle stability. This work opens a new route for optimizing two-dimensional layered materials that can be used for high energy density rechargeable SIBs.
期刊介绍:
The Chemical Engineering Journal is an international research journal that invites contributions of original and novel fundamental research. It aims to provide an international platform for presenting original fundamental research, interpretative reviews, and discussions on new developments in chemical engineering. The journal welcomes papers that describe novel theory and its practical application, as well as those that demonstrate the transfer of techniques from other disciplines. It also welcomes reports on carefully conducted experimental work that is soundly interpreted. The main focus of the journal is on original and rigorous research results that have broad significance. The Catalysis section within the Chemical Engineering Journal focuses specifically on Experimental and Theoretical studies in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. These studies have industrial impact on various sectors such as chemicals, energy, materials, foods, healthcare, and environmental protection.