Yinghao Zhang, Delu Chen, Yifan Xia, Mengjia Guo, Kefu Chao, Shuhan Li, Shifan Ma, Xin Wang
{"title":"All inorganic perovskite-based artificial synaptic device for self-optimized neuromorphic computing","authors":"Yinghao Zhang, Delu Chen, Yifan Xia, Mengjia Guo, Kefu Chao, Shuhan Li, Shifan Ma, Xin Wang","doi":"10.1016/j.nanoen.2024.110486","DOIUrl":null,"url":null,"abstract":"Artificial synapse that can mimic physiological synaptic behaviors has attracted extensive attentions in intelligent robots. However, it is an extreme challenge for artificial synapses to achieve self-optimized feedback of mimicking biological behavior. Herein, a novel self-powered artificial neural pathway (SANP) is developed by coupling CsPbBr<sub>x</sub>I<sub>(3-x)</sub>-based artificial synaptic device and triboelectric nanogenerator (TENG) for self-optimized neuromorphic computing. The TENG can convert external mechanical stimulation into electricity that acts not only as a supply source to power the SANP but also as electrical stimulation to transmit to the synaptic device for neuromorphic computing. The synaptic device’s conductance can be well modulated by the electrical stimulation, which tunes the height of Schottky barrier between Ag and CsPbBr<sub>x</sub>I<sub>(3-x)</sub>, to simulate the regulation of synaptic plasticity. Simultaneously, the synaptic device can implement synaptic functions of learning and memory. Furthermore, the SANP as self-powered mechano-nociceptor can successfully mimic the nociceptor features of “threshold”, “relaxation” and “allodynia”. More importantly, under repeated mechanical stimulation, the SANP with synaptic self-optimized feedback features enables the learning and memory training and the robotic arm’s grabbing and spreading simultaneously. Consequently, the SANP can effectively accomplish signal transmission, processing, and learning tasks without external power supply, which demonstrates potential application in neuromorphic computing and intelligent robots.","PeriodicalId":394,"journal":{"name":"Nano Energy","volume":"113 1","pages":""},"PeriodicalIF":16.8000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.nanoen.2024.110486","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Artificial synapse that can mimic physiological synaptic behaviors has attracted extensive attentions in intelligent robots. However, it is an extreme challenge for artificial synapses to achieve self-optimized feedback of mimicking biological behavior. Herein, a novel self-powered artificial neural pathway (SANP) is developed by coupling CsPbBrxI(3-x)-based artificial synaptic device and triboelectric nanogenerator (TENG) for self-optimized neuromorphic computing. The TENG can convert external mechanical stimulation into electricity that acts not only as a supply source to power the SANP but also as electrical stimulation to transmit to the synaptic device for neuromorphic computing. The synaptic device’s conductance can be well modulated by the electrical stimulation, which tunes the height of Schottky barrier between Ag and CsPbBrxI(3-x), to simulate the regulation of synaptic plasticity. Simultaneously, the synaptic device can implement synaptic functions of learning and memory. Furthermore, the SANP as self-powered mechano-nociceptor can successfully mimic the nociceptor features of “threshold”, “relaxation” and “allodynia”. More importantly, under repeated mechanical stimulation, the SANP with synaptic self-optimized feedback features enables the learning and memory training and the robotic arm’s grabbing and spreading simultaneously. Consequently, the SANP can effectively accomplish signal transmission, processing, and learning tasks without external power supply, which demonstrates potential application in neuromorphic computing and intelligent robots.
期刊介绍:
Nano Energy is a multidisciplinary, rapid-publication forum of original peer-reviewed contributions on the science and engineering of nanomaterials and nanodevices used in all forms of energy harvesting, conversion, storage, utilization and policy. Through its mixture of articles, reviews, communications, research news, and information on key developments, Nano Energy provides a comprehensive coverage of this exciting and dynamic field which joins nanoscience and nanotechnology with energy science. The journal is relevant to all those who are interested in nanomaterials solutions to the energy problem.
Nano Energy publishes original experimental and theoretical research on all aspects of energy-related research which utilizes nanomaterials and nanotechnology. Manuscripts of four types are considered: review articles which inform readers of the latest research and advances in energy science; rapid communications which feature exciting research breakthroughs in the field; full-length articles which report comprehensive research developments; and news and opinions which comment on topical issues or express views on the developments in related fields.