{"title":"Practical Aspects of Flavin-Containing Monooxygenase-Mediated Metabolism","authors":"John R. Cashman*, ","doi":"10.1021/acs.chemrestox.4c0031610.1021/acs.chemrestox.4c00316","DOIUrl":null,"url":null,"abstract":"<p >Hepatic flavin-containing monooxygenase 3 (FMO3) is arguably the most important FMO in humans from the standpoint of drug metabolism. Recently, adult hepatic FMO3 has been linked to several conditions including cardiometabolic diseases, aging, obesity, and atherosclerosis in small animals. Despite the importance of FMO3 in drug and chemical metabolism, relative to cytochrome P-450 (CYP), fewer studies have been published describing drug and chemical metabolism. This may be due to the properties of human hepatic FMO3. For example, FMO3 is thermally labile, and often methods reported in the study of human hepatic FMO3 are not optimal. Herein, I describe some practical aspects for studying human hepatic FMO3 and other FMOs.</p>","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":"37 11","pages":"1776–1793 1776–1793"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Research in Toxicology","FirstCategoryId":"3","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.chemrestox.4c00316","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Hepatic flavin-containing monooxygenase 3 (FMO3) is arguably the most important FMO in humans from the standpoint of drug metabolism. Recently, adult hepatic FMO3 has been linked to several conditions including cardiometabolic diseases, aging, obesity, and atherosclerosis in small animals. Despite the importance of FMO3 in drug and chemical metabolism, relative to cytochrome P-450 (CYP), fewer studies have been published describing drug and chemical metabolism. This may be due to the properties of human hepatic FMO3. For example, FMO3 is thermally labile, and often methods reported in the study of human hepatic FMO3 are not optimal. Herein, I describe some practical aspects for studying human hepatic FMO3 and other FMOs.
期刊介绍:
Chemical Research in Toxicology publishes Articles, Rapid Reports, Chemical Profiles, Reviews, Perspectives, Letters to the Editor, and ToxWatch on a wide range of topics in Toxicology that inform a chemical and molecular understanding and capacity to predict biological outcomes on the basis of structures and processes. The overarching goal of activities reported in the Journal are to provide knowledge and innovative approaches needed to promote intelligent solutions for human safety and ecosystem preservation. The journal emphasizes insight concerning mechanisms of toxicity over phenomenological observations. It upholds rigorous chemical, physical and mathematical standards for characterization and application of modern techniques.