Richard B. van Breemen*, Bianca Flores, Israel Rubinstein and Douglas L. Feinstein,
{"title":"Deploying Validated Mass Spectrometry for Frontline Detection and Treatment of Human Poisoning by Long-Acting Anticoagulant Rodenticides","authors":"Richard B. van Breemen*, Bianca Flores, Israel Rubinstein and Douglas L. Feinstein, ","doi":"10.1021/acs.chemrestox.4c0034410.1021/acs.chemrestox.4c00344","DOIUrl":null,"url":null,"abstract":"<p >Derived from the same natural anticoagulant as warfarin (dicoumarol), long-acting anticoagulant rodenticides (LAARs) or superwarfarins have much longer half-lives in human blood than warfarin (weeks instead of hours) and are more potent inhibitors of the same enzyme, vitamin K epoxide reductase component 1. While used effectively worldwide as rodenticides, LAARs can elicit severe, protracted, life-threatening coagulopathy in humans at blood concentrations >10 ng/mL leading to numerous accidental and intentional poisonings annually. To facilitate timely identification and quantitative analysis of LAARs in patients presenting unexplained severe, protracted, life-threatening coagulopathy, several analytical methods have been developed, all of which are based on electrospray liquid chromatography–mass spectrometry (LC–MS). In this perspective, we evaluated and compared these LC–MS methods in terms of validation, simultaneous detection of multiple LAARs, measurement of individual stereoisomers, and clinical applications.</p>","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":"37 11","pages":"1769–1775 1769–1775"},"PeriodicalIF":3.7000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Research in Toxicology","FirstCategoryId":"3","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.chemrestox.4c00344","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Derived from the same natural anticoagulant as warfarin (dicoumarol), long-acting anticoagulant rodenticides (LAARs) or superwarfarins have much longer half-lives in human blood than warfarin (weeks instead of hours) and are more potent inhibitors of the same enzyme, vitamin K epoxide reductase component 1. While used effectively worldwide as rodenticides, LAARs can elicit severe, protracted, life-threatening coagulopathy in humans at blood concentrations >10 ng/mL leading to numerous accidental and intentional poisonings annually. To facilitate timely identification and quantitative analysis of LAARs in patients presenting unexplained severe, protracted, life-threatening coagulopathy, several analytical methods have been developed, all of which are based on electrospray liquid chromatography–mass spectrometry (LC–MS). In this perspective, we evaluated and compared these LC–MS methods in terms of validation, simultaneous detection of multiple LAARs, measurement of individual stereoisomers, and clinical applications.
期刊介绍:
Chemical Research in Toxicology publishes Articles, Rapid Reports, Chemical Profiles, Reviews, Perspectives, Letters to the Editor, and ToxWatch on a wide range of topics in Toxicology that inform a chemical and molecular understanding and capacity to predict biological outcomes on the basis of structures and processes. The overarching goal of activities reported in the Journal are to provide knowledge and innovative approaches needed to promote intelligent solutions for human safety and ecosystem preservation. The journal emphasizes insight concerning mechanisms of toxicity over phenomenological observations. It upholds rigorous chemical, physical and mathematical standards for characterization and application of modern techniques.