DPC-CNN Algorithm for Multiuser Hybrid Precoding With Dynamic Structure

IF 5.3 2区 计算机科学 Q1 TELECOMMUNICATIONS IEEE Transactions on Green Communications and Networking Pub Date : 2024-03-12 DOI:10.1109/TGCN.2024.3376571
Fulai Liu;Zhuoyao Duan;Lijie Zhang;Baozhu Shi;Yubiao Liu;Ruiyan Du
{"title":"DPC-CNN Algorithm for Multiuser Hybrid Precoding With Dynamic Structure","authors":"Fulai Liu;Zhuoyao Duan;Lijie Zhang;Baozhu Shi;Yubiao Liu;Ruiyan Du","doi":"10.1109/TGCN.2024.3376571","DOIUrl":null,"url":null,"abstract":"This paper presents a dynamic partially connected (DPC) structure-based convolutional neural network (CNN) hybrid precoding with multi-user optimization algorithm. In the proposed algorithm, a multi-output CNN framework is constructed to simultaneously optimize the phase shifter and switch precoders, including custom ‘Out’ layer, deep neural network (DNN)-based analog phase shifter subnetwork, namely DNN-Fps, and DNN-based switch subnetwork, called DNN-Fs. Specifically, the DNN-Fps is designed to obtain the vectorized phase shifter precoder with constant modulus constraint. The DNN-Fs is utilized to output the vectorized switch precoder with the binary constraint. The ‘Out’ layer is defined to obtain the vectorized analog precoder with constant modulus and binary constraints. Moreover, to further improve the real-time performance of hybrid precoding, a dynamic pruning technique is applied to remove the redundant parameters for the DPC-CNN model. Finally, the DPC-CNN is trained using the loss function with the residual between the vectorized analog precoders of the fully connected (FC) and DPC structures. Theoretical analyses and simulation experiments show that compared to the FC and partially connected structures, the proposed DPC-CNN hybrid precoding algorithm can achieve a balance between spectral efficiency and energy efficiency with less execution time.","PeriodicalId":13052,"journal":{"name":"IEEE Transactions on Green Communications and Networking","volume":"8 4","pages":"1361-1370"},"PeriodicalIF":5.3000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Green Communications and Networking","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10470377/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a dynamic partially connected (DPC) structure-based convolutional neural network (CNN) hybrid precoding with multi-user optimization algorithm. In the proposed algorithm, a multi-output CNN framework is constructed to simultaneously optimize the phase shifter and switch precoders, including custom ‘Out’ layer, deep neural network (DNN)-based analog phase shifter subnetwork, namely DNN-Fps, and DNN-based switch subnetwork, called DNN-Fs. Specifically, the DNN-Fps is designed to obtain the vectorized phase shifter precoder with constant modulus constraint. The DNN-Fs is utilized to output the vectorized switch precoder with the binary constraint. The ‘Out’ layer is defined to obtain the vectorized analog precoder with constant modulus and binary constraints. Moreover, to further improve the real-time performance of hybrid precoding, a dynamic pruning technique is applied to remove the redundant parameters for the DPC-CNN model. Finally, the DPC-CNN is trained using the loss function with the residual between the vectorized analog precoders of the fully connected (FC) and DPC structures. Theoretical analyses and simulation experiments show that compared to the FC and partially connected structures, the proposed DPC-CNN hybrid precoding algorithm can achieve a balance between spectral efficiency and energy efficiency with less execution time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有动态结构的多用户混合编码 DPC-CNN 算法
本文提出了一种基于动态部分连接(DPC)结构的卷积神经网络(CNN)混合预编码多用户优化算法。在所提出的算法中,构建了一个多输出 CNN 框架来同时优化移相器和开关前置编码器,包括自定义 "输出 "层、基于深度神经网络(DNN)的模拟移相器子网络(即 DNN-Fps)和基于 DNN 的开关子网络(称为 DNN-Fs)。具体来说,DNN-Fps 的设计目的是获得具有恒定模数约束的矢量化移相器前置编码器。DNN-Fs 用于输出具有二进制约束的矢量化开关前编码器。定义 "输出 "层是为了获得具有恒定模数和二进制约束的矢量化模拟前置编码器。此外,为了进一步提高混合预编码的实时性能,还采用了动态剪枝技术来去除 DPC-CNN 模型的冗余参数。最后,利用全连接(FC)结构和 DPC 结构的矢量化模拟预编码器之间的残差损失函数来训练 DPC-CNN。理论分析和仿真实验表明,与 FC 结构和部分连接结构相比,所提出的 DPC-CNN 混合预编码算法能以更短的执行时间实现频谱效率和能效之间的平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Green Communications and Networking
IEEE Transactions on Green Communications and Networking Computer Science-Computer Networks and Communications
CiteScore
9.30
自引率
6.20%
发文量
181
期刊最新文献
Table of Contents IEEE Communications Society Information IEEE Transactions on Green Communications and Networking 2024 Index IEEE Transactions on Green Communications and Networking Vol. 8 Table of Contents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1