Carlos Cardenas-Perez;Giulio Romualdi;Mohamed Elobaid;Stefano Dafarra;Giuseppe L'Erario;Silvio Traversaro;Pietro Morerio;Alessio Del Bue;Daniele Pucci
{"title":"XBG: End-to-End Imitation Learning for Autonomous Behaviour in Human-Robot Interaction and Collaboration","authors":"Carlos Cardenas-Perez;Giulio Romualdi;Mohamed Elobaid;Stefano Dafarra;Giuseppe L'Erario;Silvio Traversaro;Pietro Morerio;Alessio Del Bue;Daniele Pucci","doi":"10.1109/LRA.2024.3495577","DOIUrl":null,"url":null,"abstract":"This letter presents XBG (eXteroceptive Behaviour Generation), a multimodal end-to-end Imitation Learning (IL) system for whole-body autonomous humanoid robots used in real-world Human-Robot Interaction (HRI) scenarios. The main contribution is an architecture for learning HRI behaviours using a data-driven approach. A diverse dataset is collected via teleoperation, covering multiple HRI scenarios, such as handshaking, handwaving, payload reception, walking, and walking with a payload. After synchronizing, filtering, and transforming the data, we show how to train the presented Deep Neural Networks (DNN), integrating exteroceptive and proprioceptive information to help the robot understand both its environment and its actions. The robot takes in sequences of images (RGB and depth) and joints state information to react accordingly. By fusing multimodal signals over time, the model enables autonomous capabilities in a robotic platform. The models are evaluated based on the success rates in the mentioned HRI scenarios and they are deployed on the ergoCub humanoid robot. XBG achieves success rates between 60% and 100% even when tested in unseen environments.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"9 12","pages":"11617-11624"},"PeriodicalIF":4.6000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10750285/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
This letter presents XBG (eXteroceptive Behaviour Generation), a multimodal end-to-end Imitation Learning (IL) system for whole-body autonomous humanoid robots used in real-world Human-Robot Interaction (HRI) scenarios. The main contribution is an architecture for learning HRI behaviours using a data-driven approach. A diverse dataset is collected via teleoperation, covering multiple HRI scenarios, such as handshaking, handwaving, payload reception, walking, and walking with a payload. After synchronizing, filtering, and transforming the data, we show how to train the presented Deep Neural Networks (DNN), integrating exteroceptive and proprioceptive information to help the robot understand both its environment and its actions. The robot takes in sequences of images (RGB and depth) and joints state information to react accordingly. By fusing multimodal signals over time, the model enables autonomous capabilities in a robotic platform. The models are evaluated based on the success rates in the mentioned HRI scenarios and they are deployed on the ergoCub humanoid robot. XBG achieves success rates between 60% and 100% even when tested in unseen environments.
期刊介绍:
The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.