Correlation between the horizontal transition dipole moment and luminescence properties of dopants in organic light-emitting diodes†

IF 6 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Materials Chemistry Frontiers Pub Date : 2024-10-03 DOI:10.1039/D4QM00727A
Hai Li, Yingqi Tang, Jong Hyeon Lim, Nannan Li, Hyo Sug Lee and Jin Yong Lee
{"title":"Correlation between the horizontal transition dipole moment and luminescence properties of dopants in organic light-emitting diodes†","authors":"Hai Li, Yingqi Tang, Jong Hyeon Lim, Nannan Li, Hyo Sug Lee and Jin Yong Lee","doi":"10.1039/D4QM00727A","DOIUrl":null,"url":null,"abstract":"<p >In developing organic light-emitting diode (OLED) materials, the luminescence properties of organic emitters and their molecular orientation within the emissive layer significantly impact the luminous effect of the emitting molecules and the device's external quantum efficiency (EQE). This study employs molecular dynamics (MD) simulations to model the vacuum deposition process and density functional theory (DFT) to investigate the molecular characteristics of fluorescence and thermally activated delayed fluorescence (TADF) emitters. The investigation encompassed comprehensive emission molecules for OLEDs, including fluorescent compounds (NaphImide-<em>n</em> and BMA-<em>n</em> series) and donor–acceptor-type TADF derivatives (<em>o</em>-Cz–TRZ, <em>o</em>-DCz–TRZ, and <em>o</em>-TCz–TRZ). Through systematic simulations, we gained deep insight into the molecular deposition behavior, horizontal transition dipole moment distribution properties, emitter luminescence characteristics, and the correlations between these key factors. The molecular orientation and host-dopant interactions play a decisive role in governing the morphology and quantum efficiency of the resulting materials. During the deposition process, the molecular emitting dipole orientation increases following the enlargement of the horizontally oriented TDM of the dopant molecules and the intermolecular van der Waals interaction between the host and the dopant. This work successfully combined MD and DFT methodologies to enhance the understanding of the relationship between the molecular architecture and luminescence efficiency, providing insight for optimizing OLED materials and utilizing their potential for guiding the design of next-generation organic electronics for display and lighting applications.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 23","pages":" 3935-3948"},"PeriodicalIF":6.0000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry Frontiers","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/qm/d4qm00727a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In developing organic light-emitting diode (OLED) materials, the luminescence properties of organic emitters and their molecular orientation within the emissive layer significantly impact the luminous effect of the emitting molecules and the device's external quantum efficiency (EQE). This study employs molecular dynamics (MD) simulations to model the vacuum deposition process and density functional theory (DFT) to investigate the molecular characteristics of fluorescence and thermally activated delayed fluorescence (TADF) emitters. The investigation encompassed comprehensive emission molecules for OLEDs, including fluorescent compounds (NaphImide-n and BMA-n series) and donor–acceptor-type TADF derivatives (o-Cz–TRZ, o-DCz–TRZ, and o-TCz–TRZ). Through systematic simulations, we gained deep insight into the molecular deposition behavior, horizontal transition dipole moment distribution properties, emitter luminescence characteristics, and the correlations between these key factors. The molecular orientation and host-dopant interactions play a decisive role in governing the morphology and quantum efficiency of the resulting materials. During the deposition process, the molecular emitting dipole orientation increases following the enlargement of the horizontally oriented TDM of the dopant molecules and the intermolecular van der Waals interaction between the host and the dopant. This work successfully combined MD and DFT methodologies to enhance the understanding of the relationship between the molecular architecture and luminescence efficiency, providing insight for optimizing OLED materials and utilizing their potential for guiding the design of next-generation organic electronics for display and lighting applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
有机发光二极管中掺杂剂的水平转换偶极矩与发光特性之间的相关性†。
在开发有机发光二极管(OLED)材料的过程中,有机发光体的发光特性及其在发光层中的分子取向会对发光分子的发光效果和器件的外部量子效率(EQE)产生重大影响。本研究采用分子动力学(MD)模拟来模拟真空沉积过程,并采用密度泛函理论(DFT)来研究荧光和热激活延迟荧光(TADF)发射体的分子特性。这项研究涵盖了 OLED 的各种发射分子,包括荧光化合物(NaphImide-n 和 BMA-n 系列)和供体-受体型 TADF 衍生物(o-Cz-TRZ、o-DCz-TRZ 和 o-TCz-TRZ)。通过系统模拟,我们深入了解了分子沉积行为、水平转变偶极矩分布特性、发射器发光特性以及这些关键因素之间的相关性。分子取向和宿主-掺杂剂相互作用对所得材料的形态和量子效率起着决定性作用。在沉积过程中,随着掺杂剂分子水平取向 TDM 的扩大以及宿主与掺杂剂之间的分子间范德华相互作用,分子发射偶极取向也随之增加。这项研究成功地结合了 MD 和 DFT 方法,加深了对分子结构与发光效率之间关系的理解,为优化有机发光二极管材料和利用其潜力指导下一代显示和照明用有机电子器件的设计提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Chemistry Frontiers
Materials Chemistry Frontiers Materials Science-Materials Chemistry
CiteScore
12.00
自引率
2.90%
发文量
313
期刊介绍: Materials Chemistry Frontiers focuses on the synthesis and chemistry of exciting new materials, and the development of improved fabrication techniques. Characterisation and fundamental studies that are of broad appeal are also welcome. This is the ideal home for studies of a significant nature that further the development of organic, inorganic, composite and nano-materials.
期刊最新文献
Back cover Back cover New heater@luminescent thermometer nano-objects: Prussian blue core@silica shell loaded with a β-diketonate Tb3+/Eu3+ complex† Multiscale engineering of anode catalyst layers in proton exchange membrane water electrolyzers Back cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1