Enhancement of catalytic centres by RuO2 addition to CuFe2O4 cathode catalyst for rechargeable lithium–air batteries: influence of CO2 on Li–O2 battery performances†

IF 5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL Sustainable Energy & Fuels Pub Date : 2024-10-16 DOI:10.1039/D4SE01202J
Sharafudeen Pamangadan C. and Perumal Elumalai
{"title":"Enhancement of catalytic centres by RuO2 addition to CuFe2O4 cathode catalyst for rechargeable lithium–air batteries: influence of CO2 on Li–O2 battery performances†","authors":"Sharafudeen Pamangadan C. and Perumal Elumalai","doi":"10.1039/D4SE01202J","DOIUrl":null,"url":null,"abstract":"<p >Herein, the oxygen reduction reaction and oxygen evolution reaction (ORR/OER) kinetics of the inverse-spinel CuFe<small><sub>2</sub></small>O<small><sub>4</sub></small> catalyst was enhanced <em>via</em> the addition of a very low quantity of RuO<small><sub>2</sub></small>. It was found that minimal addition of RuO<small><sub>2</sub></small> resulted in an improvement in the limiting current density and onset potential, lower Tafel slope and good stability for the ORR/OER. Additionally, the CuFe<small><sub>2</sub></small>O<small><sub>4</sub></small> cathode catalyst with the optimal RuO<small><sub>2</sub></small> content resulted in an outstanding Li–O<small><sub>2</sub></small> battery capacity of 14 250 mA h g<small><sup>−1</sup></small>. Given that the presence of CO<small><sub>2</sub></small> poses a major challenge in achieving Li–air batteries at a practical level, the performance of the optimized catalyst under a strained Li–air condition and in pure CO<small><sub>2</sub></small> atmosphere (Li–CO<small><sub>2</sub></small> battery) was analyzed to understand its CO<small><sub>2</sub></small> tolerance and stability. It is crucial to understand the capability of the catalyst to decompose Li<small><sub>2</sub></small>CO<small><sub>3</sub></small> formed as a stable discharge product from CO<small><sub>2</sub></small>, which generally clogs the pores of the cathode catalyst. Thus, <em>in situ</em> impedance analysis and <em>ex situ</em> XRD technique were applied to decipher the fate of CO<small><sub>2</sub></small> in the reactions of Li–air/Li–CO<small><sub>2</sub></small> batteries. Moreover, stabilization to prevent the decomposition of the electrolyte was achieved in the presence of CO<small><sub>2</sub></small>.</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":" 23","pages":" 5581-5594"},"PeriodicalIF":5.0000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy & Fuels","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/se/d4se01202j","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Herein, the oxygen reduction reaction and oxygen evolution reaction (ORR/OER) kinetics of the inverse-spinel CuFe2O4 catalyst was enhanced via the addition of a very low quantity of RuO2. It was found that minimal addition of RuO2 resulted in an improvement in the limiting current density and onset potential, lower Tafel slope and good stability for the ORR/OER. Additionally, the CuFe2O4 cathode catalyst with the optimal RuO2 content resulted in an outstanding Li–O2 battery capacity of 14 250 mA h g−1. Given that the presence of CO2 poses a major challenge in achieving Li–air batteries at a practical level, the performance of the optimized catalyst under a strained Li–air condition and in pure CO2 atmosphere (Li–CO2 battery) was analyzed to understand its CO2 tolerance and stability. It is crucial to understand the capability of the catalyst to decompose Li2CO3 formed as a stable discharge product from CO2, which generally clogs the pores of the cathode catalyst. Thus, in situ impedance analysis and ex situ XRD technique were applied to decipher the fate of CO2 in the reactions of Li–air/Li–CO2 batteries. Moreover, stabilization to prevent the decomposition of the electrolyte was achieved in the presence of CO2.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在可充电锂-空气电池的 CuFe2O4 正极催化剂中添加 RuO2 增强催化中心:CO2 对锂-空气电池性能的影响†。
本文通过添加极少量的 RuO2 增强了反向尖晶石 CuFe2O4 催化剂的氧还原反应和氧进化反应(ORR/OER)动力学。研究发现,添加极少量的 RuO2 可提高 ORR/OER 的极限电流密度和起始电位,降低 Tafel 斜率,并具有良好的稳定性。此外,具有最佳 RuO2 含量的 CuFe2O4 阴极催化剂可使锂-O2 电池容量达到 14 250 mA h g-1。鉴于二氧化碳的存在是实现锂-空气电池实用化的一大挑战,我们分析了优化催化剂在受限锂-空气条件和纯二氧化碳气氛(锂-CO2 电池)下的性能,以了解其对二氧化碳的耐受性和稳定性。CO2 通常会堵塞阴极催化剂的孔隙,因此了解催化剂分解 CO2 形成的稳定放电产物 Li2CO3 的能力至关重要。因此,我们采用了原位阻抗分析和原位 XRD 技术来解读二氧化碳在锂-空气/锂-二氧化碳电池反应中的去向。此外,在二氧化碳存在的情况下,还实现了防止电解质分解的稳定化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Sustainable Energy & Fuels
Sustainable Energy & Fuels Energy-Energy Engineering and Power Technology
CiteScore
10.00
自引率
3.60%
发文量
394
期刊介绍: Sustainable Energy & Fuels will publish research that contributes to the development of sustainable energy technologies with a particular emphasis on new and next-generation technologies.
期刊最新文献
Back cover Back cover Recent advances and opportunities in perovskite-based triple-junction tandem solar cells Enhanced thermoelectric properties of Cu1.8S via the introduction of ZnS nanostructures† Back cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1