Intriguing optoelectronic and visible-light activated photocatalytic properties of 2D AlN/GaN and TMDCs (MX2; M = Mo/W, X = S/Se) monolayers and their bilayer vdWs heterostructures
Aqsa Abid, Bo Li, Muhammad Haneef, Attaur Rahman, Yasser Elmasry
{"title":"Intriguing optoelectronic and visible-light activated photocatalytic properties of 2D AlN/GaN and TMDCs (MX2; M = Mo/W, X = S/Se) monolayers and their bilayer vdWs heterostructures","authors":"Aqsa Abid, Bo Li, Muhammad Haneef, Attaur Rahman, Yasser Elmasry","doi":"10.1140/epjp/s13360-024-05814-8","DOIUrl":null,"url":null,"abstract":"<div><p>First-principles calculations reveal that 2D Group III–V binary compounds (AlN/GaN) and TMDCs (MX<sub>2</sub>; M = Mo/W and X = S/Se) exhibit stable novel bilayer van der Waals (vdWs) heterostructures, with the AA-stacking pattern being the most stable. These direct band gap semiconductors have energies ranging from 1.45 to 2.96 eV, and their band gap nature enhances charge carrier mobility, which is beneficial for nanoelectronics. The <i>p</i>-orbital of AlN/GaN and <i>d</i>-orbital of TMDCs primarily contribute to the formation of conduction and valence bands, respectively. All vdWs heterobilayers show a type-II band alignment, ideal for light harvesting and detection. Bader population analysis confirms interlayer charge transfer, and the materials demonstrate strong light absorption, which is attributed to their robust quantum and dielectric confinement. MoS<sub>2</sub> and MoSe<sub>2</sub> notably exhibit a blue shift in their absorption spectra. Furthermore, these heterobilayers have promising photocatalytic properties for water dissociation, with band edge potentials computed for a pH range from 0 to 7, showing changes in the conduction and valence bands with varying pH levels.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":792,"journal":{"name":"The European Physical Journal Plus","volume":"139 11","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal Plus","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjp/s13360-024-05814-8","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
First-principles calculations reveal that 2D Group III–V binary compounds (AlN/GaN) and TMDCs (MX2; M = Mo/W and X = S/Se) exhibit stable novel bilayer van der Waals (vdWs) heterostructures, with the AA-stacking pattern being the most stable. These direct band gap semiconductors have energies ranging from 1.45 to 2.96 eV, and their band gap nature enhances charge carrier mobility, which is beneficial for nanoelectronics. The p-orbital of AlN/GaN and d-orbital of TMDCs primarily contribute to the formation of conduction and valence bands, respectively. All vdWs heterobilayers show a type-II band alignment, ideal for light harvesting and detection. Bader population analysis confirms interlayer charge transfer, and the materials demonstrate strong light absorption, which is attributed to their robust quantum and dielectric confinement. MoS2 and MoSe2 notably exhibit a blue shift in their absorption spectra. Furthermore, these heterobilayers have promising photocatalytic properties for water dissociation, with band edge potentials computed for a pH range from 0 to 7, showing changes in the conduction and valence bands with varying pH levels.
期刊介绍:
The aims of this peer-reviewed online journal are to distribute and archive all relevant material required to document, assess, validate and reconstruct in detail the body of knowledge in the physical and related sciences.
The scope of EPJ Plus encompasses a broad landscape of fields and disciplines in the physical and related sciences - such as covered by the topical EPJ journals and with the explicit addition of geophysics, astrophysics, general relativity and cosmology, mathematical and quantum physics, classical and fluid mechanics, accelerator and medical physics, as well as physics techniques applied to any other topics, including energy, environment and cultural heritage.