Gao-Hua Fan, Jian-Wei Li, Ya-Fei Wu, Si-Yu Hu, Xiao-Dong Deng, Hao-Yang Zhou, Zhan-Ke Li, Yan Liu
{"title":"Nanoparticle attachment promotes nugget effect of Au-rich metallic melts in hydrothermal ore deposits","authors":"Gao-Hua Fan, Jian-Wei Li, Ya-Fei Wu, Si-Yu Hu, Xiao-Dong Deng, Hao-Yang Zhou, Zhan-Ke Li, Yan Liu","doi":"10.1007/s00410-024-02184-3","DOIUrl":null,"url":null,"abstract":"<div><p>The role of bismuth melts in scavenging Au from hydrothermal fluids has been increasingly recognized in the last decade, but the question of how the Au extracted by such melts transforms into nuggets to form high-grade ores remains obscure. Here, we have characterized the nanostructure of gold nanoparticles (AuNPs) in Bi-rich gold ores that precipitated from Bi-Au melts and propose a novel model to explain the genesis of gold nuggets. This model comprises three consecutive processes of Au crystallization in these melts into coarse grains: the initial formation of atomic clusters equivalent to Au nucleation, the coalescence of these clusters into low-crystalline AuNPs followed by their transformation into well-structured ones, and finally the preferential attachment of these NPs along the {111} lattice plane. This atomic crystallization pathway bridges the gap between Au scavenging by metallic melts and nugget formation, thus making the picture of the formation of high-grade gold ores in the context of melt-fluid interaction more complete.</p></div>","PeriodicalId":526,"journal":{"name":"Contributions to Mineralogy and Petrology","volume":"179 12","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00410-024-02184-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contributions to Mineralogy and Petrology","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00410-024-02184-3","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The role of bismuth melts in scavenging Au from hydrothermal fluids has been increasingly recognized in the last decade, but the question of how the Au extracted by such melts transforms into nuggets to form high-grade ores remains obscure. Here, we have characterized the nanostructure of gold nanoparticles (AuNPs) in Bi-rich gold ores that precipitated from Bi-Au melts and propose a novel model to explain the genesis of gold nuggets. This model comprises three consecutive processes of Au crystallization in these melts into coarse grains: the initial formation of atomic clusters equivalent to Au nucleation, the coalescence of these clusters into low-crystalline AuNPs followed by their transformation into well-structured ones, and finally the preferential attachment of these NPs along the {111} lattice plane. This atomic crystallization pathway bridges the gap between Au scavenging by metallic melts and nugget formation, thus making the picture of the formation of high-grade gold ores in the context of melt-fluid interaction more complete.
期刊介绍:
Contributions to Mineralogy and Petrology is an international journal that accepts high quality research papers in the fields of igneous and metamorphic petrology, geochemistry and mineralogy.
Topics of interest include: major element, trace element and isotope geochemistry, geochronology, experimental petrology, igneous and metamorphic petrology, mineralogy, major and trace element mineral chemistry and thermodynamic modeling of petrologic and geochemical processes.