Potential of 5CBLC-doped PVA-PVP films in optoelectronic devices: particularly regarding their enhanced insulation properties

IF 3.3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Optical and Quantum Electronics Pub Date : 2024-11-20 DOI:10.1007/s11082-024-07234-5
W. Jilani, A. Bouzidi, I. S. Yahia, H. Guermazi
{"title":"Potential of 5CBLC-doped PVA-PVP films in optoelectronic devices: particularly regarding their enhanced insulation properties","authors":"W. Jilani,&nbsp;A. Bouzidi,&nbsp;I. S. Yahia,&nbsp;H. Guermazi","doi":"10.1007/s11082-024-07234-5","DOIUrl":null,"url":null,"abstract":"<div><p>We aim to analyze the influence of 5CBLC content on the structural, optical, and dielectric properties of the PVA-PVP blend polymer. The absence of additional peaks in the XRD patterns after doping strengthens the argument for complete dissociation and homogeneous complexation of 5CBLC molecules within the blend polymer matrix. The dopant atoms are no longer arranged in a separate crystalline structure but are uniformly distributed throughout the polymer, leading to no distinct peaks in the XRD pattern. Changes in the wavelengths of maximum absorption indicate changes in the energy required to excite electrons. If the peaks shift towards longer wavelengths (red shift), it suggests a decrease in the energy gap between orbitals, potentially due to increased conjugation caused by 5CBLC. The 0.05 ml of doped PVA-PVP@5CBLC PBFs readily absorbs light at wavelengths below 824 nm. A 5CBLC molecule's energy level may allow it to absorb photons with energies below 824 nm. As 5CBLC scatter and absorb light, there is a decrease in normalizing power with 5CBLC amounts. As the amount of 5CBLC increases, it removes some light from the incident beam through both scattering and absorption. This reduces the amount of light available for further scattering by the particles of interest in the experiment. As both the imaginary and real parts of the impedance decrease, the 5CBLC amounts facilitated a more resistive and less reactive matrix for the PVA-PVP blend. The ESC and EPC significantly decrease with increasing frequency for both the pure PVA-PVP PBF and the PVA-PVP@5CBLC PBFs in various 5CBLC amounts. Results suggest that combining 5CBLC with PVA-PVP creates a material with properties that make it well-suited for applications in optoelectronics.</p></div>","PeriodicalId":720,"journal":{"name":"Optical and Quantum Electronics","volume":"56 12","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical and Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11082-024-07234-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

We aim to analyze the influence of 5CBLC content on the structural, optical, and dielectric properties of the PVA-PVP blend polymer. The absence of additional peaks in the XRD patterns after doping strengthens the argument for complete dissociation and homogeneous complexation of 5CBLC molecules within the blend polymer matrix. The dopant atoms are no longer arranged in a separate crystalline structure but are uniformly distributed throughout the polymer, leading to no distinct peaks in the XRD pattern. Changes in the wavelengths of maximum absorption indicate changes in the energy required to excite electrons. If the peaks shift towards longer wavelengths (red shift), it suggests a decrease in the energy gap between orbitals, potentially due to increased conjugation caused by 5CBLC. The 0.05 ml of doped PVA-PVP@5CBLC PBFs readily absorbs light at wavelengths below 824 nm. A 5CBLC molecule's energy level may allow it to absorb photons with energies below 824 nm. As 5CBLC scatter and absorb light, there is a decrease in normalizing power with 5CBLC amounts. As the amount of 5CBLC increases, it removes some light from the incident beam through both scattering and absorption. This reduces the amount of light available for further scattering by the particles of interest in the experiment. As both the imaginary and real parts of the impedance decrease, the 5CBLC amounts facilitated a more resistive and less reactive matrix for the PVA-PVP blend. The ESC and EPC significantly decrease with increasing frequency for both the pure PVA-PVP PBF and the PVA-PVP@5CBLC PBFs in various 5CBLC amounts. Results suggest that combining 5CBLC with PVA-PVP creates a material with properties that make it well-suited for applications in optoelectronics.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
掺杂 5CBLC 的 PVA-PVP 薄膜在光电设备中的应用潜力:特别是其增强的绝缘性能
我们的目的是分析 5CBLC 的含量对 PVA-PVP 共混聚合物的结构、光学和介电性能的影响。掺杂后,XRD 图谱中没有出现额外的峰值,这加强了 5CBLC 分子在共混聚合物基体中完全解离和均匀复合的论据。掺杂原子不再以独立的结晶结构排列,而是均匀地分布在整个聚合物中,因此 XRD 图谱中没有明显的峰值。最大吸收波长的变化表明激发电子所需的能量发生了变化。如果峰值向更长的波长移动(红移),则表明轨道之间的能隙减小,这可能是由于 5CBLC 增加了共轭作用。0.05 毫升的掺杂 PVA-PVP@5CBLC PBF 很容易吸收波长低于 824 纳米的光。5CBLC 分子的能级可使其吸收能量低于 824 纳米的光子。随着 5CBLC 对光的散射和吸收,归一化功率会随着 5CBLC 数量的增加而降低。随着 5CBLC 数量的增加,它会通过散射和吸收从入射光束中去除一些光。这就减少了可供实验中相关粒子进一步散射的光量。由于阻抗的虚部和实部都有所降低,5CBLC 的用量有助于 PVA-PVP 混合物形成电阻更大、反应更少的基质。随着频率的增加,纯 PVA-PVP PBF 和不同 5CBLC 用量的 PVA-PVP@5CBLC PBF 的 ESC 和 EPC 都会明显降低。结果表明,将 5CBLC 与 PVA-PVP 相结合可产生一种材料,其特性使其非常适合光电应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Optical and Quantum Electronics
Optical and Quantum Electronics 工程技术-工程:电子与电气
CiteScore
4.60
自引率
20.00%
发文量
810
审稿时长
3.8 months
期刊介绍: Optical and Quantum Electronics provides an international forum for the publication of original research papers, tutorial reviews and letters in such fields as optical physics, optical engineering and optoelectronics. Special issues are published on topics of current interest. Optical and Quantum Electronics is published monthly. It is concerned with the technology and physics of optical systems, components and devices, i.e., with topics such as: optical fibres; semiconductor lasers and LEDs; light detection and imaging devices; nanophotonics; photonic integration and optoelectronic integrated circuits; silicon photonics; displays; optical communications from devices to systems; materials for photonics (e.g. semiconductors, glasses, graphene); the physics and simulation of optical devices and systems; nanotechnologies in photonics (including engineered nano-structures such as photonic crystals, sub-wavelength photonic structures, metamaterials, and plasmonics); advanced quantum and optoelectronic applications (e.g. quantum computing, memory and communications, quantum sensing and quantum dots); photonic sensors and bio-sensors; Terahertz phenomena; non-linear optics and ultrafast phenomena; green photonics.
期刊最新文献
Retraction Note: Quantum communication based cyber security analysis using artificial intelligence with IoMT Retraction Note: Quantum photonics based health monitoring system using music data analysis by machine learning models Retraction Note: Enhancing sports performance through quantum-based wearable health monitoring data analysis using machine learning Exploring random laser characteristics in core@ shell nano-scatter centers: trends and opportunities High sensitivity of a perfect absorber based on octagonal-star and circular ring patterned graphene metasurface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1