Spontaneous lithium extraction and enrichment from brine with net energy output driven by counter-ion gradients

Ge Zhang, Yuqi Li, Xun Guan, Guoliang Hu, Hance Su, Xueer Xu, Guangxia Feng, Sanzeeda Baig Shuchi, Sang Cheol Kim, Jiawei Zhou, Rong Xu, Xin Xiao, Allen Wu, Yi Cui
{"title":"Spontaneous lithium extraction and enrichment from brine with net energy output driven by counter-ion gradients","authors":"Ge Zhang, Yuqi Li, Xun Guan, Guoliang Hu, Hance Su, Xueer Xu, Guangxia Feng, Sanzeeda Baig Shuchi, Sang Cheol Kim, Jiawei Zhou, Rong Xu, Xin Xiao, Allen Wu, Yi Cui","doi":"10.1038/s44221-024-00326-2","DOIUrl":null,"url":null,"abstract":"To meet the increasing lithium demands created by global electrification, a fast, flexible, inexpensive and sustainable mining process is needed, which is yet to be realized. Here we explore an untapped energy source that is inherent in all ion-separation processes to achieve spontaneous Li extraction with net energy production. The driving force comes from the huge concentration difference of counter ions (usually chloride) between the feeding and receiving solutions. Experimental results under various feeding compositions can be well explained by the Gibbs–Donnan equilibrium. Utilizing a Li-selective ceramic membrane and a chloride-storing silver electrode, we successfully achieved Li extraction from simulated brine with an energy output of 1.6 Wh molLi−1. The system is stable over 300 hours of operation, maintaining a high Li/Mg selectivity of 450. Moreover, even spontaneous enrichment can be achieved when the counter ion concentration is much greater than that of Li ion in the feeding brine. We anticipate that the concept of this work could not only reshape the Li supply chain but also seed a fundamental transformation of all ion-separation processes. Utilizing the immense osmotic energy in membrane separation processes enables spontaneous lithium extraction while generating net energy, offering a promising method for carbon-negative resource recovery.","PeriodicalId":74252,"journal":{"name":"Nature water","volume":"2 11","pages":"1091-1101"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature water","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44221-024-00326-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To meet the increasing lithium demands created by global electrification, a fast, flexible, inexpensive and sustainable mining process is needed, which is yet to be realized. Here we explore an untapped energy source that is inherent in all ion-separation processes to achieve spontaneous Li extraction with net energy production. The driving force comes from the huge concentration difference of counter ions (usually chloride) between the feeding and receiving solutions. Experimental results under various feeding compositions can be well explained by the Gibbs–Donnan equilibrium. Utilizing a Li-selective ceramic membrane and a chloride-storing silver electrode, we successfully achieved Li extraction from simulated brine with an energy output of 1.6 Wh molLi−1. The system is stable over 300 hours of operation, maintaining a high Li/Mg selectivity of 450. Moreover, even spontaneous enrichment can be achieved when the counter ion concentration is much greater than that of Li ion in the feeding brine. We anticipate that the concept of this work could not only reshape the Li supply chain but also seed a fundamental transformation of all ion-separation processes. Utilizing the immense osmotic energy in membrane separation processes enables spontaneous lithium extraction while generating net energy, offering a promising method for carbon-negative resource recovery.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用反离子梯度驱动净能量输出从卤水中自发提取和富集锂
为满足全球电气化带来的日益增长的锂需求,需要一种快速、灵活、廉价且可持续的开采工艺,但这种工艺尚未实现。在此,我们探索了所有离子分离过程中固有的一种尚未开发的能源,以实现自发锂萃取并产生净能源。驱动力来自进料溶液和接收溶液之间反离子(通常是氯离子)的巨大浓度差。吉布斯-多南平衡可以很好地解释各种进料成分下的实验结果。利用锂选择性陶瓷膜和储氯银电极,我们成功地从模拟盐水中提取了锂,能量输出为 1.6 Wh molLi-1。该系统可稳定运行 300 小时,并保持 450 的高锂/镁选择性。此外,当反离子浓度远高于进料盐水中的锂离子浓度时,甚至可以实现自发富集。我们预计,这项工作的理念不仅能重塑锂离子供应链,还能引发所有离子分离过程的根本性变革。在膜分离过程中利用巨大的渗透能,可实现自发锂提取,同时产生净能源,为碳负资源回收提供了一种前景广阔的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Drinking water and the law Late lessons from early warnings on PFAS Daily sampling reveals household-specific water microbiome signatures and shared antimicrobial resistomes in premise plumbing PFAS concentration and destruction A quadrillion little pieces of plastic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1