Pub Date : 2024-10-18DOI: 10.1038/s44221-024-00335-1
Research and development in the wastewater sector have shown that offsetting greenhouse gas emissions through improved efficiency and resource recovery is possible, but efforts beyond science and engineering are necessary to achieve net zero.
{"title":"The tortuous path towards net zero emissions in the wastewater sector","authors":"","doi":"10.1038/s44221-024-00335-1","DOIUrl":"10.1038/s44221-024-00335-1","url":null,"abstract":"Research and development in the wastewater sector have shown that offsetting greenhouse gas emissions through improved efficiency and resource recovery is possible, but efforts beyond science and engineering are necessary to achieve net zero.","PeriodicalId":74252,"journal":{"name":"Nature water","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44221-024-00335-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142451326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-14DOI: 10.1038/s44221-024-00307-5
Tao Liu, Haoran Duan, Sebastian Lücker, Min Zheng, Holger Daims, Zhiguo Yuan, Jianhua Guo
Nitrogen-cycling microorganisms play essential roles in biological wastewater treatment, where nitrogen is removed with substantial energy and chemical consumption and greenhouse gas emissions. The discoveries of new nitrogen-cycling microorganisms paved the way for a remarkable paradigm shift from energy-negative and carbon-positive to energy-positive and carbon-neutral wastewater management. This Review reflects on the trajectory of these microbial discoveries and summarizes the technological progress enabled by them thus far. By bridging the gap between environmental microbiologists and water engineers, who are both interested in these new nitrogen-cycling microorganisms but with different focuses and expertise, this Review acknowledges the challenges encountered and illuminates the exciting future ahead. The continued close collaboration between scientists and engineers will keep redefining the landscape of wastewater management. This Review highlights how the discovery of new nitrogen-cycling microorganisms paves the way for process iterations and technological innovations towards sustainable wastewater management.
{"title":"Sustainable wastewater management through nitrogen-cycling microorganisms","authors":"Tao Liu, Haoran Duan, Sebastian Lücker, Min Zheng, Holger Daims, Zhiguo Yuan, Jianhua Guo","doi":"10.1038/s44221-024-00307-5","DOIUrl":"10.1038/s44221-024-00307-5","url":null,"abstract":"Nitrogen-cycling microorganisms play essential roles in biological wastewater treatment, where nitrogen is removed with substantial energy and chemical consumption and greenhouse gas emissions. The discoveries of new nitrogen-cycling microorganisms paved the way for a remarkable paradigm shift from energy-negative and carbon-positive to energy-positive and carbon-neutral wastewater management. This Review reflects on the trajectory of these microbial discoveries and summarizes the technological progress enabled by them thus far. By bridging the gap between environmental microbiologists and water engineers, who are both interested in these new nitrogen-cycling microorganisms but with different focuses and expertise, this Review acknowledges the challenges encountered and illuminates the exciting future ahead. The continued close collaboration between scientists and engineers will keep redefining the landscape of wastewater management. This Review highlights how the discovery of new nitrogen-cycling microorganisms paves the way for process iterations and technological innovations towards sustainable wastewater management.","PeriodicalId":74252,"journal":{"name":"Nature water","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142451319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-10DOI: 10.1038/s44221-024-00318-2
Cuihong Song, Jun-Jie Zhu, Zhiguo Yuan, Mark C. M. van Loosdrecht, Zhiyong Jason Ren
Here we delve into the challenges and innovative strategies for achieving net-zero emissions in the wastewater sector, a notable source of global greenhouse gases. Unlike other infrastructure sectors, wastewater management involves complex and variably quantifiable emissions across all scopes, making standardization difficult. This study provides a global overview of the sector’s emissions profiles by leveraging literature mining, data analysis and case studies. It emphasizes the substantial variability in emissions, identifies key emission sources and locations, and advocates for tailored monitoring and mitigation strategies. It highlights the potential emissions shifting across scopes due to the adoption of new technologies and accounting practices, and it argues for a holistic analysis for optimization and integration to ensure a net benefit of the overall reductions in carbon footprints. This study underscores the urgency of rethinking current practices to align with ambitious mid-century net-zero targets, emphasizing the critical role of accurate emissions quantification and comprehensive decarbonization strategies. This Review offers a comprehensive global overview of greenhouse gas emissions in the wastewater sector, highlighting key gaps in emission quantification and mitigation. It explores current decarbonization strategies, emphasizes the complexity of emissions across all scopes, and advocates for tailored monitoring, holistic analysis and strong support from different stakeholders to drive effective mitigation and achieve net-zero emissions.
{"title":"Defining and achieving net-zero emissions in the wastewater sector","authors":"Cuihong Song, Jun-Jie Zhu, Zhiguo Yuan, Mark C. M. van Loosdrecht, Zhiyong Jason Ren","doi":"10.1038/s44221-024-00318-2","DOIUrl":"10.1038/s44221-024-00318-2","url":null,"abstract":"Here we delve into the challenges and innovative strategies for achieving net-zero emissions in the wastewater sector, a notable source of global greenhouse gases. Unlike other infrastructure sectors, wastewater management involves complex and variably quantifiable emissions across all scopes, making standardization difficult. This study provides a global overview of the sector’s emissions profiles by leveraging literature mining, data analysis and case studies. It emphasizes the substantial variability in emissions, identifies key emission sources and locations, and advocates for tailored monitoring and mitigation strategies. It highlights the potential emissions shifting across scopes due to the adoption of new technologies and accounting practices, and it argues for a holistic analysis for optimization and integration to ensure a net benefit of the overall reductions in carbon footprints. This study underscores the urgency of rethinking current practices to align with ambitious mid-century net-zero targets, emphasizing the critical role of accurate emissions quantification and comprehensive decarbonization strategies. This Review offers a comprehensive global overview of greenhouse gas emissions in the wastewater sector, highlighting key gaps in emission quantification and mitigation. It explores current decarbonization strategies, emphasizes the complexity of emissions across all scopes, and advocates for tailored monitoring, holistic analysis and strong support from different stakeholders to drive effective mitigation and achieve net-zero emissions.","PeriodicalId":74252,"journal":{"name":"Nature water","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142451329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-08DOI: 10.1038/s44221-024-00320-8
Xiang-Yu Kong, Liping Wen
Desalination of brackish groundwater at the community scale could be realized in resource-constrained communities through the use of photovoltaic electrodialysis. Here a flow-commanded current-flow strategy is described.
{"title":"Photovoltaic electrodialysis makes brackish water treatment simpler","authors":"Xiang-Yu Kong, Liping Wen","doi":"10.1038/s44221-024-00320-8","DOIUrl":"10.1038/s44221-024-00320-8","url":null,"abstract":"Desalination of brackish groundwater at the community scale could be realized in resource-constrained communities through the use of photovoltaic electrodialysis. Here a flow-commanded current-flow strategy is described.","PeriodicalId":74252,"journal":{"name":"Nature water","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142451308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-08DOI: 10.1038/s44221-024-00321-7
Christopher G. Arges
Electrochemical ion pumping that continuously removes ions from feed streams by circuit-switch-induced ion shuttling provides a potentially more practical and energy-efficient approach to electrochemical desalination.
{"title":"Reinventing the electrochemical desalination platform","authors":"Christopher G. Arges","doi":"10.1038/s44221-024-00321-7","DOIUrl":"10.1038/s44221-024-00321-7","url":null,"abstract":"Electrochemical ion pumping that continuously removes ions from feed streams by circuit-switch-induced ion shuttling provides a potentially more practical and energy-efficient approach to electrochemical desalination.","PeriodicalId":74252,"journal":{"name":"Nature water","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142451332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-08DOI: 10.1038/s44221-024-00314-6
Jonathan Tae-Yoon Bessette, Shane Richard Pratt, Amos G. Winter V
Renewable powered, brackish groundwater desalination is an underutilized resource in the developing world, where there are unreliable energy sources and reliance on increasingly saline groundwater. Traditional renewable desalination technologies require sizable energy storage for sufficient water production, leading to increased cost, maintenance and complexity. We theorize and demonstrate a simple control strategy—flow-commanded current control—using photovoltaic electrodialysis (PV-ED) to enable direct-drive (little to no energy storage), optimally controlled desalination at high production rates. This control scheme was implemented on a fully autonomous, community-scale (2–5 m3 d−1) PV-ED prototype system and operated for 6 months in New Mexico on real brackish groundwater. The prototype fully harnessed 94% of the extracted PV energy despite featuring an energy storage to water productivity ratio of over 99% less than the median PV desalination systems in literature. Flow-commanded current control PV-ED provides a simple strategy to desalinate water for resource-constrained communities and has implications for decarbonizing larger, energy-intensive desalination industries. Desalination of brackish water powered by renewable energy sources is a promising approach to obtain clean water in environmentally constrained communities, but high energy storage requirements hamper its development. Direct-drive photovoltaic electrodialysis is now shown to efficiently produce desalinated water while requiring minimal energy storage.
{"title":"Direct-drive photovoltaic electrodialysis via flow-commanded current control","authors":"Jonathan Tae-Yoon Bessette, Shane Richard Pratt, Amos G. Winter V","doi":"10.1038/s44221-024-00314-6","DOIUrl":"10.1038/s44221-024-00314-6","url":null,"abstract":"Renewable powered, brackish groundwater desalination is an underutilized resource in the developing world, where there are unreliable energy sources and reliance on increasingly saline groundwater. Traditional renewable desalination technologies require sizable energy storage for sufficient water production, leading to increased cost, maintenance and complexity. We theorize and demonstrate a simple control strategy—flow-commanded current control—using photovoltaic electrodialysis (PV-ED) to enable direct-drive (little to no energy storage), optimally controlled desalination at high production rates. This control scheme was implemented on a fully autonomous, community-scale (2–5 m3 d−1) PV-ED prototype system and operated for 6 months in New Mexico on real brackish groundwater. The prototype fully harnessed 94% of the extracted PV energy despite featuring an energy storage to water productivity ratio of over 99% less than the median PV desalination systems in literature. Flow-commanded current control PV-ED provides a simple strategy to desalinate water for resource-constrained communities and has implications for decarbonizing larger, energy-intensive desalination industries. Desalination of brackish water powered by renewable energy sources is a promising approach to obtain clean water in environmentally constrained communities, but high energy storage requirements hamper its development. Direct-drive photovoltaic electrodialysis is now shown to efficiently produce desalinated water while requiring minimal energy storage.","PeriodicalId":74252,"journal":{"name":"Nature water","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44221-024-00314-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142451331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-03DOI: 10.1038/s44221-024-00322-6
Maria Salvetti
Reducing carbon emission in the wastewater treatment sector requires both lower energy consumption and a transition towards renewable energy sources. Utilizing the embedded energy in wastewater, which has been traditionally overlooked, could be a substantial additional step towards achieving carbon neutrality.
{"title":"Going from energy efficiency to climate neutrality on the way to decarbonizing the wastewater sector","authors":"Maria Salvetti","doi":"10.1038/s44221-024-00322-6","DOIUrl":"10.1038/s44221-024-00322-6","url":null,"abstract":"Reducing carbon emission in the wastewater treatment sector requires both lower energy consumption and a transition towards renewable energy sources. Utilizing the embedded energy in wastewater, which has been traditionally overlooked, could be a substantial additional step towards achieving carbon neutrality.","PeriodicalId":74252,"journal":{"name":"Nature water","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142451322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-03DOI: 10.1038/s44221-024-00319-1
Treavor H. Boyer
A two-step process of water uptake by ion-exchange resin followed by evaporation can concentrate brine solutions without the need for heating.
离子交换树脂吸水后蒸发的两步法可以浓缩盐水溶液,而无需加热。
{"title":"Brine concentration at ambient conditions using ion exchange","authors":"Treavor H. Boyer","doi":"10.1038/s44221-024-00319-1","DOIUrl":"10.1038/s44221-024-00319-1","url":null,"abstract":"A two-step process of water uptake by ion-exchange resin followed by evaporation can concentrate brine solutions without the need for heating.","PeriodicalId":74252,"journal":{"name":"Nature water","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142451300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-03DOI: 10.1038/s44221-024-00317-3
Jurg Keller
With ever growing challenges, our urban water systems will need to adapt and change significantly in coming years. A new tool is now available to evaluate a wide range of diversified and decentralized solutions, including their costs and benefits, to improve sustainability and resilience of our cities.
{"title":"New approach to progress development of hybrid urban water systems","authors":"Jurg Keller","doi":"10.1038/s44221-024-00317-3","DOIUrl":"10.1038/s44221-024-00317-3","url":null,"abstract":"With ever growing challenges, our urban water systems will need to adapt and change significantly in coming years. A new tool is now available to evaluate a wide range of diversified and decentralized solutions, including their costs and benefits, to improve sustainability and resilience of our cities.","PeriodicalId":74252,"journal":{"name":"Nature water","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142451316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-03DOI: 10.1038/s44221-024-00305-7
Hao Chen, Arup K. SenGupta
Achieving brine concentration by membrane distillation or the various humidification–dehumidification processes that are currently available always requires a thermal energy input and an elevated temperature. In this study, we developed a brine concentration process mediated by the unique osmotic and evaporation properties of high-capacity ion exchange resins. The evaporative ion exchange process consists of two steps. First, when a concentrated salt solution is brought into contact with a relatively dry, high-capacity polymeric ion exchanger, water selectively permeates into the ion exchanger phase through osmosis and the resin swells. In the second step, water evaporates when the swollen ion exchanger is brought into contact with air with low relative humidity and the resin shrinks. Here we show that, with hypersaline produced water from Marcellus gas shale, this evaporative ion exchange process attained total dissolved solids greater than 400,000 mg l−1, leading to the precipitation/crystallization of barium and sodium chloride at ambient temperature without causing any fouling of the ion exchange resins. The evaporative ion exchange process developed in this study achieves brine concentration at ambient temperature without fouling, providing a non-thermal brine concentration technology towards zero liquid discharge.
{"title":"Accelerated low-temperature, low-fouling brine concentration through evaporative ion exchange mediated by the effect of functional groups","authors":"Hao Chen, Arup K. SenGupta","doi":"10.1038/s44221-024-00305-7","DOIUrl":"10.1038/s44221-024-00305-7","url":null,"abstract":"Achieving brine concentration by membrane distillation or the various humidification–dehumidification processes that are currently available always requires a thermal energy input and an elevated temperature. In this study, we developed a brine concentration process mediated by the unique osmotic and evaporation properties of high-capacity ion exchange resins. The evaporative ion exchange process consists of two steps. First, when a concentrated salt solution is brought into contact with a relatively dry, high-capacity polymeric ion exchanger, water selectively permeates into the ion exchanger phase through osmosis and the resin swells. In the second step, water evaporates when the swollen ion exchanger is brought into contact with air with low relative humidity and the resin shrinks. Here we show that, with hypersaline produced water from Marcellus gas shale, this evaporative ion exchange process attained total dissolved solids greater than 400,000 mg l−1, leading to the precipitation/crystallization of barium and sodium chloride at ambient temperature without causing any fouling of the ion exchange resins. The evaporative ion exchange process developed in this study achieves brine concentration at ambient temperature without fouling, providing a non-thermal brine concentration technology towards zero liquid discharge.","PeriodicalId":74252,"journal":{"name":"Nature water","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142451298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}