Pub Date : 2025-02-21DOI: 10.1038/s44221-025-00401-2
By harnessing the power of the Sun, interfacial solar evaporation provides a sustainable approach to addressing water challenges, advancing the mission of ensuring clean water for everyone.
{"title":"Solar energy for clean water and beyond","authors":"","doi":"10.1038/s44221-025-00401-2","DOIUrl":"10.1038/s44221-025-00401-2","url":null,"abstract":"By harnessing the power of the Sun, interfacial solar evaporation provides a sustainable approach to addressing water challenges, advancing the mission of ensuring clean water for everyone.","PeriodicalId":74252,"journal":{"name":"Nature water","volume":"3 2","pages":"123-123"},"PeriodicalIF":0.0,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44221-025-00401-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143466273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-11DOI: 10.1038/s44221-025-00393-z
Linfeng Lei, Zhi Xu
Membrane-based ion selective separation technology offers a promising solution for lithium extraction from brines. A counterion effect created by the design of positively charged ion transport channels of membranes exhibits a high-speed transport pathway for lithium-ion and enhanced lithium/magnesium ion selectivity.
{"title":"Counterion-mediated membranes for fast lithium-ion transport","authors":"Linfeng Lei, Zhi Xu","doi":"10.1038/s44221-025-00393-z","DOIUrl":"10.1038/s44221-025-00393-z","url":null,"abstract":"Membrane-based ion selective separation technology offers a promising solution for lithium extraction from brines. A counterion effect created by the design of positively charged ion transport channels of membranes exhibits a high-speed transport pathway for lithium-ion and enhanced lithium/magnesium ion selectivity.","PeriodicalId":74252,"journal":{"name":"Nature water","volume":"3 2","pages":"142-143"},"PeriodicalIF":0.0,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143466324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-11DOI: 10.1038/s44221-024-00373-9
Robert Stefanski, Andrea Toreti, Valentin Aich, Michael Hagenlocher, Birguy Lamizana Diallo, Rachael McDonnell, Roger S. Pulwarty, Mark Svoboda, Daniel Tsegai, Marthe Wens
The global drought community and policy representatives gathered at the United Nations Convention to Combat Desertification’s 16th Conference of the Parties (UNCCD COP16) in Riyadh in December 2024 to discuss the urgent need for improvements in assessing and quantifying drought risks, in developing and implementing transformative solutions, and in boosting policy actions and investments. Only through unprecedented global cooperation can we facilitate pathways towards drought-resilient futures.
{"title":"Drought resilience demands urgent global actions and cooperation","authors":"Robert Stefanski, Andrea Toreti, Valentin Aich, Michael Hagenlocher, Birguy Lamizana Diallo, Rachael McDonnell, Roger S. Pulwarty, Mark Svoboda, Daniel Tsegai, Marthe Wens","doi":"10.1038/s44221-024-00373-9","DOIUrl":"10.1038/s44221-024-00373-9","url":null,"abstract":"The global drought community and policy representatives gathered at the United Nations Convention to Combat Desertification’s 16th Conference of the Parties (UNCCD COP16) in Riyadh in December 2024 to discuss the urgent need for improvements in assessing and quantifying drought risks, in developing and implementing transformative solutions, and in boosting policy actions and investments. Only through unprecedented global cooperation can we facilitate pathways towards drought-resilient futures.","PeriodicalId":74252,"journal":{"name":"Nature water","volume":"3 2","pages":"127-130"},"PeriodicalIF":0.0,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143466275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-11DOI: 10.1038/s44221-025-00391-1
Ghim Wei Ho, Yusuke Yamauchi, Liangbing Hu, Baoxia Mi, Ning Xu, Jia Zhu, Peng Wang
Despite significant advancements in fundamental understanding and technical applications, much remains to be explored to fully harness solar energy for addressing water, energy, and resource challenges. We asked experts in the field to share their insights on opportunities and challenges in pushing solar technology to better serve society''s increasing demands for water and achieve sustainability in water-related domains.
{"title":"Solar evaporation and clean water","authors":"Ghim Wei Ho, Yusuke Yamauchi, Liangbing Hu, Baoxia Mi, Ning Xu, Jia Zhu, Peng Wang","doi":"10.1038/s44221-025-00391-1","DOIUrl":"10.1038/s44221-025-00391-1","url":null,"abstract":"Despite significant advancements in fundamental understanding and technical applications, much remains to be explored to fully harness solar energy for addressing water, energy, and resource challenges. We asked experts in the field to share their insights on opportunities and challenges in pushing solar technology to better serve society''s increasing demands for water and achieve sustainability in water-related domains.","PeriodicalId":74252,"journal":{"name":"Nature water","volume":"3 2","pages":"131-134"},"PeriodicalIF":0.0,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143466276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-10DOI: 10.1038/s44221-025-00394-y
Sunxiang Zheng, Beatriz Oelckers, Aashish Khandelwal, Zhiyong Jason Ren
Solar evaporation ponds are widely used in brine mining but face environmental and societal challenges. Advancing interfacial solar evaporation technology from lab discovery to field demonstration shows promise in improving pond efficiency and sustainability.
{"title":"Interfacial solar evaporation for sustainable brine mining","authors":"Sunxiang Zheng, Beatriz Oelckers, Aashish Khandelwal, Zhiyong Jason Ren","doi":"10.1038/s44221-025-00394-y","DOIUrl":"10.1038/s44221-025-00394-y","url":null,"abstract":"Solar evaporation ponds are widely used in brine mining but face environmental and societal challenges. Advancing interfacial solar evaporation technology from lab discovery to field demonstration shows promise in improving pond efficiency and sustainability.","PeriodicalId":74252,"journal":{"name":"Nature water","volume":"3 2","pages":"135-137"},"PeriodicalIF":0.0,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143466310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-10DOI: 10.1038/s44221-025-00392-0
Haolan Xu
Interfacial solar evaporation technology is becoming versatile for addressing a range of global challenges, and is expected to play a more vital role in addressing water scarcity and energy shortages in the next decade.
{"title":"Taking solar evaporation technologies to a new era","authors":"Haolan Xu","doi":"10.1038/s44221-025-00392-0","DOIUrl":"10.1038/s44221-025-00392-0","url":null,"abstract":"Interfacial solar evaporation technology is becoming versatile for addressing a range of global challenges, and is expected to play a more vital role in addressing water scarcity and energy shortages in the next decade.","PeriodicalId":74252,"journal":{"name":"Nature water","volume":"3 2","pages":"125-126"},"PeriodicalIF":0.0,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143466312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-03DOI: 10.1038/s44221-024-00386-4
Pei Xin, Lucheng Zhan
Statistical analyses show that terrestrial groundwater levels affect redox potential in salt marshes, highlighting the importance of upland–marsh hydraulic connectivity in influencing marsh biogeochemistry and ecological function.
{"title":"Upland–marsh hydraulic connectivity affects marsh biogeochemistry","authors":"Pei Xin, Lucheng Zhan","doi":"10.1038/s44221-024-00386-4","DOIUrl":"10.1038/s44221-024-00386-4","url":null,"abstract":"Statistical analyses show that terrestrial groundwater levels affect redox potential in salt marshes, highlighting the importance of upland–marsh hydraulic connectivity in influencing marsh biogeochemistry and ecological function.","PeriodicalId":74252,"journal":{"name":"Nature water","volume":"3 2","pages":"138-139"},"PeriodicalIF":0.0,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143466313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-03DOI: 10.1038/s44221-024-00384-6
Julia A. Guimond, Emilio Grande, Holly A. Michael, Dannielle Pratt, Elizabeth Herndon, Genevieve L. Noyce, Nicholas D. Ward, Inke Forbrich, Peter Regier, Matthew J. Berens, Bhavna Arora
Salt marshes are hotspots of nutrient processing and carbon sequestration. So far, studies addressing spatiotemporal variability in and drivers of salt marsh biogeochemical function, carbon storage and resilience have focused on ocean-driven surface hydrologic influences, neglecting effects of terrestrial hydrology through subsurface connections. Here we evaluate drivers of salt marsh redox potential, a proxy for biogeochemical state, through wavelet analyses and information theory using data from seven marshes. The results point to terrestrial groundwater level as a dominant control on redox variability across all sites. Because redox is a key driver of biogeochemical processes, and specifically oxidation of organic matter that sequesters carbon and maintains marsh elevation, these terrestrial influences are critical to understanding marsh function and evolution. The newly identified links between onshore groundwater levels and marsh redox conditions shift the traditional paradigm and suggest that terrestrial hydrology is a primary control on salt marsh carbon sequestration potential and resilience. This study investigates drivers of redox potential in several salt marsh sites on the basis of time series datasets. Wavelet and mutual information analyses show that the terrestrial groundwater level, rather than the marsh groundwater level, is the dominant control on redox potential.
{"title":"The hidden influence of terrestrial groundwater on salt marsh function and resilience","authors":"Julia A. Guimond, Emilio Grande, Holly A. Michael, Dannielle Pratt, Elizabeth Herndon, Genevieve L. Noyce, Nicholas D. Ward, Inke Forbrich, Peter Regier, Matthew J. Berens, Bhavna Arora","doi":"10.1038/s44221-024-00384-6","DOIUrl":"10.1038/s44221-024-00384-6","url":null,"abstract":"Salt marshes are hotspots of nutrient processing and carbon sequestration. So far, studies addressing spatiotemporal variability in and drivers of salt marsh biogeochemical function, carbon storage and resilience have focused on ocean-driven surface hydrologic influences, neglecting effects of terrestrial hydrology through subsurface connections. Here we evaluate drivers of salt marsh redox potential, a proxy for biogeochemical state, through wavelet analyses and information theory using data from seven marshes. The results point to terrestrial groundwater level as a dominant control on redox variability across all sites. Because redox is a key driver of biogeochemical processes, and specifically oxidation of organic matter that sequesters carbon and maintains marsh elevation, these terrestrial influences are critical to understanding marsh function and evolution. The newly identified links between onshore groundwater levels and marsh redox conditions shift the traditional paradigm and suggest that terrestrial hydrology is a primary control on salt marsh carbon sequestration potential and resilience. This study investigates drivers of redox potential in several salt marsh sites on the basis of time series datasets. Wavelet and mutual information analyses show that the terrestrial groundwater level, rather than the marsh groundwater level, is the dominant control on redox potential.","PeriodicalId":74252,"journal":{"name":"Nature water","volume":"3 2","pages":"157-166"},"PeriodicalIF":0.0,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143466311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-31DOI: 10.1038/s44221-024-00385-5
Sebastiano Piccolroaz, Niccolò Ragno
{"title":"When rivers turn to deserts and deserts to rivers","authors":"Sebastiano Piccolroaz, Niccolò Ragno","doi":"10.1038/s44221-024-00385-5","DOIUrl":"10.1038/s44221-024-00385-5","url":null,"abstract":"","PeriodicalId":74252,"journal":{"name":"Nature water","volume":"3 2","pages":"124-124"},"PeriodicalIF":0.0,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143466314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-27DOI: 10.1038/s44221-024-00370-y
Alex T. Ford, Andrew C. Singer, Peter Hammond, Jamie Woodward
The water and sewerage companies (WaSCs) in England are majority-owned by a range of global investors. The industry is under intense scrutiny for widespread failure in its environmental performance, discharging 12.7 million monitored hours of untreated wastewater and sewage into English waterways between 2019 and the end of 2023. At the time of writing, multiple investigations by environmental and financial regulators are in progress, and regulatory oversight is under review by the recently formed Office for Environmental Protection. While limited monitoring hid the full extent of underperformance, we argue that the WaSCs have prolonged this environmental disaster through strategies that mirror those of other large polluting industries in the past. We test this hypothesis for the nine major WaSCs in England against a published framework of 28 ‘greenwashing/deception’ tactics of large industries. We identified 22 of these tactics that could be seen as disinformation, greenwashing and manufacturing doubt. The financial exploitation of water resources in England, alongside long-term degradation of infrastructure and ineffective regulation, raises globally important issues around water security, ethics and environmental stewardship. Much greater scrutiny of both industry performance and industry communication is required. In the past 5 years, a huge amount of untreated wastewater has been released into English waterways. An analysis of the communication used by the water utilities shows that they have employed strategies used by large polluting industries in the past, prolonging the consequences of this environmental disaster.
{"title":"Water industry strategies to manufacture doubt and deflect blame for sewage pollution in England","authors":"Alex T. Ford, Andrew C. Singer, Peter Hammond, Jamie Woodward","doi":"10.1038/s44221-024-00370-y","DOIUrl":"10.1038/s44221-024-00370-y","url":null,"abstract":"The water and sewerage companies (WaSCs) in England are majority-owned by a range of global investors. The industry is under intense scrutiny for widespread failure in its environmental performance, discharging 12.7 million monitored hours of untreated wastewater and sewage into English waterways between 2019 and the end of 2023. At the time of writing, multiple investigations by environmental and financial regulators are in progress, and regulatory oversight is under review by the recently formed Office for Environmental Protection. While limited monitoring hid the full extent of underperformance, we argue that the WaSCs have prolonged this environmental disaster through strategies that mirror those of other large polluting industries in the past. We test this hypothesis for the nine major WaSCs in England against a published framework of 28 ‘greenwashing/deception’ tactics of large industries. We identified 22 of these tactics that could be seen as disinformation, greenwashing and manufacturing doubt. The financial exploitation of water resources in England, alongside long-term degradation of infrastructure and ineffective regulation, raises globally important issues around water security, ethics and environmental stewardship. Much greater scrutiny of both industry performance and industry communication is required. In the past 5 years, a huge amount of untreated wastewater has been released into English waterways. An analysis of the communication used by the water utilities shows that they have employed strategies used by large polluting industries in the past, prolonging the consequences of this environmental disaster.","PeriodicalId":74252,"journal":{"name":"Nature water","volume":"3 2","pages":"231-243"},"PeriodicalIF":0.0,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44221-024-00370-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143466321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}