Julia S. Caserto, Lyndsey Wright, Corey Reese, Matthew Huang, Mary K. Salcedo, Stephanie Fuchs, Sunghwan Jung, Scott H. McArt, Minglin Ma
{"title":"Ingestible hydrogel microparticles improve bee health after pesticide exposure","authors":"Julia S. Caserto, Lyndsey Wright, Corey Reese, Matthew Huang, Mary K. Salcedo, Stephanie Fuchs, Sunghwan Jung, Scott H. McArt, Minglin Ma","doi":"10.1038/s41893-024-01432-5","DOIUrl":null,"url":null,"abstract":"Bees provide crucial pollination services for crop cultivation, contributing billions of dollars to the global agricultural economy. However, exposure to pesticides such as neonicotinoids represents a major problem for bee health, necessitating strategies that can improve agricultural sustainability and pollinator health. Here we report a simple and scalable solution, through ingestible hydrogel microparticles (IHMs), which can capture neonicotinoids in vitro and in the bee gastrointestinal tract to mitigate the harmful effects of pesticides. Using the common eastern bumblebee (Bombus impatiens) as a model species and the neonicotinoid imidacloprid, we demonstrated by means of lethal and sublethal assays the substantial benefits of IHM treatments. Under lethal exposure of imidacloprid, bumblebees that received IHM treatment exhibited a 30% increase in survival relative to groups without IHM treatment. After a sublethal exposure of 5 ng, IHM treatment resulted in improved feeding motivation and a 44% increase in the number of bees that engaged in locomotor activity. Wingbeat frequency was significantly lower after a single 5 or 10 ng imidacloprid dose; however, IHM treatment improved wingbeat frequency. Overall, the IHMs improved bumblebee health, and with further optimization have the potential to benefit apiculture and reduce risk during crop pollination by managed bees. Bees are important components of sustainable agriculture through their pollination services, however, they are susceptible to pesticide toxicity. This study presents an ingestible hydrogel microparticle technology that can lessen the detrimental effects of toxicity from the imidacloprid pesticide.","PeriodicalId":19056,"journal":{"name":"Nature Sustainability","volume":"7 11","pages":"1441-1451"},"PeriodicalIF":25.7000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Sustainability","FirstCategoryId":"93","ListUrlMain":"https://www.nature.com/articles/s41893-024-01432-5","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Bees provide crucial pollination services for crop cultivation, contributing billions of dollars to the global agricultural economy. However, exposure to pesticides such as neonicotinoids represents a major problem for bee health, necessitating strategies that can improve agricultural sustainability and pollinator health. Here we report a simple and scalable solution, through ingestible hydrogel microparticles (IHMs), which can capture neonicotinoids in vitro and in the bee gastrointestinal tract to mitigate the harmful effects of pesticides. Using the common eastern bumblebee (Bombus impatiens) as a model species and the neonicotinoid imidacloprid, we demonstrated by means of lethal and sublethal assays the substantial benefits of IHM treatments. Under lethal exposure of imidacloprid, bumblebees that received IHM treatment exhibited a 30% increase in survival relative to groups without IHM treatment. After a sublethal exposure of 5 ng, IHM treatment resulted in improved feeding motivation and a 44% increase in the number of bees that engaged in locomotor activity. Wingbeat frequency was significantly lower after a single 5 or 10 ng imidacloprid dose; however, IHM treatment improved wingbeat frequency. Overall, the IHMs improved bumblebee health, and with further optimization have the potential to benefit apiculture and reduce risk during crop pollination by managed bees. Bees are important components of sustainable agriculture through their pollination services, however, they are susceptible to pesticide toxicity. This study presents an ingestible hydrogel microparticle technology that can lessen the detrimental effects of toxicity from the imidacloprid pesticide.
期刊介绍:
Nature Sustainability aims to facilitate cross-disciplinary dialogues and bring together research fields that contribute to understanding how we organize our lives in a finite world and the impacts of our actions.
Nature Sustainability will not only publish fundamental research but also significant investigations into policies and solutions for ensuring human well-being now and in the future.Its ultimate goal is to address the greatest challenges of our time.